Exercice 1: cet exercice est à rendre au plus tard le lundi 23 janvier 2017

Faire l'exercice 12 de la Feuille 12 (intégrales de Wallis), en rajoutant la question préliminaire : calculer W_0 et W_1 . Dans cet exercice, toutes les méthodes sont classiques, mais les calculs sont parfois astucieux, notamment dans les questions 2. et 3. N'hésitez pas à me solliciter!

Exercice 2: idéalement (pour votre organisation) à rendre aussi avant le 30 janvier!

On introduit la fonction f définie par $f(x) = \int_x^{2x} \frac{1}{\sqrt{t^2+1}} dt$.

- 1. Justifier que f est définie sur \mathbb{R} .
- 2. Etudier la parité de f.
- 3. Montrer que f est de classe C^1 sur \mathbb{R} , et déterminer f'.
- 4. (a) En utilisant la relation $t^2 \le t^2 + 1 \le t^2 + 2t + 1$, valable pour tout t réel positif ou nul, montrer que l'on a l'encadrement suivant : $\forall x \in \mathbb{R}_+^*$, $\ln(2x+1) \ln(x+1) \le f(x) \le \ln(2)$
 - (b) Donner alors la limite de f(x) lorsque x tend vers $+\infty$.
- 5. Dresser le tableau de variation complet de f.
- 6. Résoudre l'équation f(x) = 0.
- 7. (a) Montrer que pour tout réel x, on a : $x + \sqrt{x^2 + 1} > 0$. On note dorénavant h la fonction définie sur \mathbb{R} , par $h(x) = \ln(x + \sqrt{x^2 + 1})$.
 - (b) Calculer h'. En déduire l'expression explicite de f(x).
- 8. Pour ceux qui veulent en faire plus :

Recherche d'un équivalent de f(x) lorsque x est au voisinage de 0.

- (a) Etablir que, pour tout réel x strictement positif, on a : $x f(x) = \int_x^{2x} \frac{t^2}{\sqrt{t^2+1}(1+\sqrt{t^2+1})} dt$
- (b) En déduire : $\forall x \in \mathbb{R}_+^*$, $0 \leqslant x f(x) \leqslant \frac{7}{6}x^3$ puis que $f(x) \underset{0^+}{\sim} x$.
- (c) Montrer que l'on a aussi : $f(x) \sim x$.

Exercice 3: à rendre au plus tard le lundi 30 janvier 2017

On considère pour toute matrice $A \in \mathcal{M}_3(\mathbb{R})$, les ensembles suivants : $E_1(A) = \{M \in \mathcal{M}_3(\mathbb{R}) \mid AM = M\}$ et $E_2(A) = \{M \in \mathcal{M}_3(\mathbb{R}) \mid A^2M = AM\}$

- 1. Montrer que $E_1(A)$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. On admettra qu'il en est de même pour $E_2(A)$.
- 2. Exemple: dans cette question uniquement, on prend $A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

Déterminer une base de $E_1(A)$.

- 3. On revient au cas général.
 - (a) Etablir $E_1(A) \subset E_2(A)$.
 - (b) Montrer que si A est inversible alors $E_1(A) = E_2(A)$.
 - (c) Montrer que si $A I_3$ est inversible, alors $E_1(A) = \{0\}$
- 4. Exemple : on pose $A = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Déterminer $E_1(A)$ et $E_2(A)$.

Exercice 1:

On pose pour tout $n \in \mathbb{N}$, $P_n(X) = \prod_{k=0}^n (1 + X^{2k})$.

- 1. Expliciter P_0 , P_1 et P_2 puis trouver une relation de récurrence entre P_{n+1} et P_n .
- 2. Déterminer le degré de P_n en fonction de n: on commencera par deviner le résultat, puis on le justifiera à l'aide d'un raisonnement par récurrence.

Exercice 2: Polynômes d'interpolation de Lagrange

- 1. Un exemple : Déterminer l'unique polynôme P de degré 3 tel que P(1)=0, P(2)=0, P(3)=0 et P(4)=1.
- 2. Cas général : soit $n \in \mathbb{N}$, et $a_0, a_1, ..., a_n$ n réels 2 à 2 distincts.
 - a) Déterminer l'unique polynôme de degré n, noté L_0 , tel que $L_0(a_0) = 1$ et pour tout $k \in [1, n], L_0(a_k) = 0$.
 - b) bonus : plus généralement, pour tout $k \in [1, n]$, déterminer l'unique polynôme de degré n, que l'on notera L_k , tel que $L_k(a_k)=1$ et pour tout $j\in \llbracket 0,n \rrbracket,\, j\neq k,\, L_k(a_j)=0.$

Conseil: Pour justifier l'unicité (en même temps que le reste), il suffit de raisonner par analyse et synthèse. Faire ce raisonnement pour chaque question.

Exercice 3:

Sercice 3: On note
$$f: \mathbb{R} \to \mathbb{R}$$
 l'application définie, pour tout $x \in \mathbb{R}$, par $: f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$

- 1. Déterminer le signe de f sur \mathbb{R} .
- 2. Montrer que f admet une limite en 0 (c'est-à-dire est continue en 0).
- 3. Déterminer pour tout $x \in \mathbb{R}^*$, f'(x).
- 4. Étudier les variations de l'application $u: \mathbb{R} \to \mathbb{R}$, définie, pour tout $x \in \mathbb{R}$, par $u(x) = (1-x)e^x 1$
- 5. En déduire le tableau de variations de f.
- 6. Déterminer la limite de f en $+\infty$. Interpréter graphiquement.
- 7. Déterminer la limite de f en $-\infty$. La droite y=-x est-elle asymptote à la courbe au voisinage de $-\infty$?
- 8. Résoudre l'équation $f(x) = x \text{ sur } \mathbb{R}$.
- 9. Tracer l'allure de la courbe représentative de f.

Devoir à la maison 4 Exercice 4:

à rendre le jeudi 6 novembre 2014

On pose pour tout $n \in \mathbb{N}$, $P_n(X) = \prod_{k=0}^n (1 + X^{2k})$.

- 1. Expliciter P_0 , P_1 et P_2 puis trouver une relation de récurrence entre P_{n+1} et P_n .
- 2. Déterminer le degré de P_n en fonction de n: on commencera par deviner le résultat, puis on le justifiera à l'aide d'un raisonnement par récurrence.

Exercice 5: Polynômes d'interpolation de Lagrange

- 1. Un exemple : Déterminer l'unique polynôme P de degré 3 tel que P(1)=0, P(2)=0, P(3)=0 et P(4)=1.
- 2. Cas général : soit $n \in \mathbb{N}$, et $a_0, a_1, ..., a_n$ n réels 2 à 2 distincts.
 - a) Déterminer l'unique polynôme de degré n, noté L_0 , tel que $L_0(a_0) = 1$ et pour tout $k \in [1, n]$, $L_0(a_k) = 0$.
 - b) bonus : plus généralement, pour tout $k \in [1, n]$, déterminer l'unique polynôme de degré n, que l'on notera L_k , tel que $L_k(a_k) = 1$ et pour tout $j \in [0, n]$, $j \neq k$, $L_k(a_j) = 0$.

Conseil: Pour justifier l'unicité (en même temps que le reste), il suffit de raisonner par analyse et synthèse. Faire ce raisonnement pour chaque question.

vercice 6: On note
$$f: \mathbb{R} \to \mathbb{R}$$
 l'application définie, pour tout $x \in \mathbb{R}$, par $: f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$

- 1. Déterminer le signe de f sur \mathbb{R} .
- 2. Montrer que f admet une limite en 0 (c'est-à-dire est continue en 0).
- 3. Déterminer pour tout $x \in \mathbb{R}^*$, f'(x).
- 4. Étudier les variations de l'application $u: \mathbb{R} \to \mathbb{R}$, définie, pour tout $x \in \mathbb{R}$, par $u(x) = (1-x)e^x 1$
- 5. En déduire le tableau de variations de f.
- 6. Déterminer la limite de f en $+\infty$. Interpréter graphiquement.
- 7. Déterminer la limite de f en $-\infty$. La droite y=-x est-elle asymptote à la courbe au voisinage de $-\infty$?
- 8. Résoudre l'équation $f(x) = x \text{ sur } \mathbb{R}$.
- 9. Tracer l'allure de la courbe représentative de f.