

Les exercices de ce problème sont indépendants.

Si vous repérez ce qui vous semble être une erreur d'énoncé, signalez-la sur votre copie puis indiquez les initiatives que vous seriez alors amenés à prendre.

Exercice 1:

On note I et A les matrices de $\mathcal{M}_3(\mathbb{R})$ définies par :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

et \mathcal{E} l'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ défini par : $\mathcal{E} = \left\{ \begin{pmatrix} a+c & b & c \\ b & a+2c & b \\ c & b & a+c \end{pmatrix}, (a,b,c) \in \mathbb{R}^3 \right\}$

On admet que \mathcal{E} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

- 1. a) Calculer A^2 puis montrer que $A^3 = 2A$
 - b) Montrer que la famille (I, A, A^2) est libre.
 - c) Montrer que $\forall n \in \mathbb{N}$, $A^{2n+1} = 2^n A$ puis déterminer A^{2n} pour tout $n \in \mathbb{N}^*$.
- 2. Montrer que la famille (I, A, A^2) est une base de \mathcal{E} . En déduire la dimension de \mathcal{E} .
- 3. a) Montrer que $\forall n \in \mathbb{N}$, $A^n \in \mathcal{E}$
 - b) On pose $\mathcal{F} = \{ M \in \mathcal{M}_3(\mathbb{R}) \text{ telle que } M = P(A) \text{ où } P \in \mathbb{R}[X] \}$ Montrer que $\mathcal{F} = \mathcal{E}$.
- 4. a) Montrer que pour toute matrice M de \mathcal{E} , la matrice AM appartient \mathcal{E} .
 - b) On note f l'application de \mathcal{E} dans \mathcal{E} qui, à toute matrice M de \mathcal{E} , associe AM. Vérifier que f est un endomorphisme de l'espace vectoriel \mathcal{E} .
 - c) Former la matrice W de f dans la base (I, A, A^2) de \mathcal{E} .
- 5. a) Montrer que $f \circ f \circ f = 2f$.
 - b) L'endomorphisme f est-il bijectif?
 - c) Déterminer une base de Im(f) et une base de Ker(f).
 - d) Montrer que $\mathcal{E} = \operatorname{Im}(f) \bigoplus \operatorname{Ker}(f)$.
- 6. On se place désormais dans un espace E quelconque de dimension n (avec $n \ge 2$). On considère un endomorphisme $g \in L(E)$ et un polynôme P annulateur de g de degré r (avec $r \ge 2$) tel que P(0) = 0 et $P'(0) \ne 0$
 - a) Justifier qu'il existe r rels $a_1, a_2, ..., a_r$ avec $a_1 \neq 0$ tel que $P(X) = a_1 X + a_2 X^2 + ... + a_r X^r$
 - b) Montrer que, si $\overrightarrow{u} \in \text{Im}(g)$, il existe r-1 rels $b_1, b_2, ..., b_{r-1}$ tels que : $\overrightarrow{u} = b_1 g(\overrightarrow{u}) + b_2 g^2(\overrightarrow{u}) + ... + b_{r-1} g^{r-1}(\overrightarrow{u})$
 - c) Montrer que $Ker(g) \cap Im(g) = \{O_E\}$ puis que $Im(g) \bigoplus Ker(g) = E$.

Exercice 2:

Pour tout entier n supérieur ou égal 2, on considère une urne contenant n boules numérotées de 1 à n, dans laquelle on effectue une succession de (n+1) tirages d'une boule avec remise et l'on note X_n la variable aléatoire égale au numéro du tirage où, pour la première fois, on a obtenu un numéro supérieur ou égal au numéro précédent.

Par exemple, si n=5 et si les tirages amènent successivement les numéros 5,3,2,2,6,3, alors $X_5=4$ (on tire avec remise 6 boules dans [1,5] et le 4^{ieme} tirage donne un numéro \geq celui obtenu au 3^{ieme} tirage)

1 ECS Lyce Montaigne Bordeaux 2015-2016

Si n=8 et si on obtient successivement 7,5,4,2,1,3,8,6,6 alors $X_8=6$ (on tire 9 boules dans [1,8] et c'est au 6^{ieme} tirage que, pour la première fois, on obtient un numéro \geq aux précédents)

Pour tout k de [1, n+1], on note N_k la variable aléatoire égale au numéro obtenu au k-ième tirage.

Partie I : Etude du cas n = 3

On suppose dans cette partie **uniquement** que n=3.

On tire alors successivement avec remise 4 boules dans une urne contenant des boules numérotées 1, 2, 3

- 1. a) Justifier que $\mathbb{P}(X_3 \leq 1) = 0$ puis déterminer $X_3(\Omega)$
 - b) Exprimer l'événement $(X_3 = 4)$ à l'aide d'événements faisant intervenir les variables N_1, N_2 et N_3 . En déduire $P(X_3 = 4)$.
 - c) Calculer $\mathbb{P}_{(N_1=1)}(X_3=2)$, $\mathbb{P}_{(N_1=2)}(X_3=2)$ et $\mathbb{P}_{(N_1=3)}(X_3=2)$ puis montrer que $\mathbb{P}(X_3=2)=\frac{2}{3}$
 - d) En déduire que $\mathbb{P}(X_3 = 3) = \frac{8}{27}$.
- 2. Calculer l'espérance de X_3 .

Partie II: Cas général

Dans toute cette partie, n est un entier fixé supérieur ou égal 2.

- 1. Pour tout k de [1, n+1], reconnaître la loi de N_k et rappeler son espérance.
- 2. Justifier que $X_n(\Omega) = [2, n+1]$ et calculer $\mathbb{P}(X_n = n+1)$.
- 3. a) Montrer, pour tout *i* de [1, n], on a : $\mathbb{P}_{(N_1=i)}(X_n = 2) = \frac{n-i+1}{n}$.
 - b) En déduire une expression simple de $\mathbb{P}(X_n = 2)$.
- 4. a) Exprimer, pour tout $k \in [2, n+1]$, $\mathbb{P}(X_n = k)$ à l'aide de $\mathbb{P}(X_n > k-1)$ et de $\mathbb{P}(X_n > k)$.
 - b) En déduire que $\mathbb{E}(X_n) = \sum_{k=0}^n \mathbb{P}(X_n > k)$.
- 5. a) On admet que $\forall k \in \llbracket 0, n \rrbracket$, $\mathbb{P}(X_n > k) = \frac{1}{n^k} \binom{n}{k}$. Calculer alors $\mathbb{E}(X_n)$.
 - b) Montrer que $\forall k \in [2, n+1]$, $\mathbb{P}(X_n = k) = \frac{k-1}{n^k} {n+1 \choose k}$.

Partie III: Une convergence en loi

On s'intéresse dans cette partie à la suite de variables aléatoires $(X_n)_{n\geq 2}$.

- 1. Montrer que la série $\sum \frac{k-1}{k!}$ converge et calculer sa somme $\sum_{k=2}^{+\infty} \frac{k-1}{k!}$
- 2. On admet qu'il existe une variable aléatoire Z à valeurs dans $[2, +\infty[$ telle que :

$$\forall k \in [2, +\infty[], \ \mathbb{P}(Z=k) = \frac{k-1}{k!}$$

Montrer que Z admet une espérance et la calculer. Comparer $\mathbb{E}(Z)$ et $\lim_{n\to +\infty} \mathbb{E}(X_n)$.

Exercice 3:

PARTIE I : Étude d'une fonction définie par la somme d'une série

On s'intéresse dans cette partie, pour tout x > 0, à la série $\sum \frac{(-1)^{n+1}}{n^x}$.

1. Soit
$$x \in \mathbb{R}^{+*}$$
. On note, pour tout $n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k^x}$.

- a) Montrer que les suites $(u_{2p})_{p\in\mathbb{N}^*}$ et $(u_{2p-1})_{p\in\mathbb{N}^*}$ sont adjacentes.
- b) En déduire que la série $\sum \frac{(-1)^{n+1}}{n^x}$ converge. On note $S(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n^x}$.
- 2. Soient $x \in \mathbb{R}^{+*}$ et $p \in \mathbb{N}^*$. Montrer :

$$\sum_{k=1}^{2p} \frac{(-1)^{k+1}}{k^x} = \sum_{k=1}^p \frac{1}{(2k-1)^x} - \frac{1}{2^x} \sum_{k=1}^p \frac{1}{k^x} \quad \text{puis}: \quad \sum_{k=1}^{2p} \frac{(-1)^{k+1}}{k^x} = \sum_{k=1}^{2p} \frac{1}{k^x} - \frac{1}{2^{x-1}} \sum_{k=1}^p \frac{1}{k^x}.$$

- 3. On admet que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Déterminer la valeur de S(2).
- 4. On pose, pour tout $n \in \mathbb{N}^*$, $v_n = \sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k}$.
 - a) Soit $n \in \mathbb{N}^*$. Montrer, en utilisant la question **2.** : $v_n = \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}}$.
 - b) En déduire la convergence et la limite de la suite $(v_n)_{n\in\mathbb{N}^*}$, puis la valeur de S(1). (on pourra au préalable calculer $\int_0^1 \frac{dt}{1+t}$)

PARTIE II: Étude d'une fonction définie par une intégrale

On définit la fonction Γ sur $]0, +\infty[$ par $: \quad \forall x>0, \ \Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}\mathrm{d}t.$

On admet que $\Gamma(x)$ existe pour tout x > 0 et que $\forall n \in \mathbb{N}^*, \ \Gamma(n) = (n-1)!$

- 1) Montrer que, pour x > 0, l'intégrale $\int_0^{+\infty} \frac{t^x}{1 + e^t} dt$ converge. On pose, pour tout réel x de $]0, +\infty[$, $I(x) = \int_0^{+\infty} \frac{t^x}{1 + e^t} dt$.
- 2) Soit x > 0. On définit la fonction g_x sur $]0, +\infty[$ en posant : $\forall t > 0$, $g_x(t) = \frac{t^x}{1 + e^t}$.
 - a) Montrer: $\forall n \in \mathbb{N}^*, \ \forall t \in \mathbb{R}^{+*}, \ g_x(t) = (-1)^n g_x(t) e^{-nt} + \sum_{k=1}^n (-1)^{k+1} t^x e^{-kt}.$
 - b) Justifier, pour tout $k \in \mathbb{N}^*$, que l'intégrale $\int_0^{+\infty} t^x e^{-kt} dt$ converge et que l'on a :

$$\int_0^{+\infty} t^x e^{-kt} dt = \frac{1}{k^{x+1}} \Gamma(x+1).$$

- c) Montrer que, pour tout $n \in \mathbb{N}^*$, l'intégrale $\int_0^{+\infty} g_x(t)e^{-nt}dt$ converge, puis que la limite de $\int_0^{+\infty} g_x(t)e^{-nt}dt$, lorsque l'entier n tend vers $+\infty$, est égale à 0.
- d) En déduire la relation : $I(x) = S(x+1)\Gamma(x+1)$, où la fonction S a été définie dans la partie \mathbf{I} .
- 3) En utilisant la partie \mathbf{I}_{\bullet} , déterminer la valeur de I(1).