Eléments de correction du DS 4

Question:

- 1. Coquille dans l'énoncé : montrer que $\forall n \in \mathbb{N}, \ u_n \in]0,1[$ (car si $u_n=1,$ alors $u_n^3=1$ d'où $u_{n+1}=0$: problème!) Par récurrence : $h\acute{e}r\acute{e}dit\acute{e}$ si $0 < u_n < 1$ alors $0 < u_n^3 < u_n < 1$ d'où $u_{n+1}=u_n-u_n^3 \in]0,1[$.
- 2. $u_{n+1} u_n = -u_n^3 < 0$ donc u décroissante et minorée par 0 converge. Soit ℓ sa limite. Par passage à la limite dans la relation de récurrence : $\ell = \ell - \ell^3 \Leftrightarrow \ell = 0$.
- 3. $u_n^3 = u_n u_{n+1}$, terme général d'une série télescopique. On étudie les sommes partielles : $\sum_{k=0}^{n} u_k^3 = \sum_{k=0}^{n} (u_k - u_{k+1}) = u_0 - u_{n+1} \xrightarrow[n \to +\infty]{} u_0 = \frac{1}{2} \in \mathbb{R}. \text{ Donc la série } \sum_{n > 0} u_n^3 \text{ converge et } \sum_{n=0}^{+\infty} u_n^3 = \frac{1}{2}.$
- 4. $\frac{u_{n+1}}{u_n} = \frac{u_n u_n^3}{u_n} = 1 u_n^2 \underset{n \to +\infty}{\longrightarrow} 1.$ 5. $\frac{1}{u_{n+1}} \frac{1}{u_n} = \frac{u_n u_{n+1}}{u_n u_{n+1}} = \frac{u_n^3}{u_n u_{n+1}} \sim \frac{u_n^3}{u_n^2} = u_n.$ Ou poser le quotient.
- 6. La série $\sum_{n\geq 0} \left(\frac{1}{u_{n+1}} \frac{1}{u_n}\right)$ est télescopique et divergente car $\sum_{k=0}^n \left(\frac{1}{u_{k+1}} \frac{1}{u_k}\right) = \frac{1}{u_{n+1}} \frac{1}{u_0} \xrightarrow[n \to +\infty]{} +\infty$. Or pour tout $n \in \mathbb{N}$, $u_n \geq 0$, et $\frac{1}{u_{n+1}} \frac{1}{u_n} \geq 0$ (car $u_{n+1} \leq u_n$), et $u_n \sim \frac{1}{u_{n+1}} \frac{1}{u_n}$: d'après le critère par équivalence des séries à termes positifs, on en déduit que la série $\sum_{n>0} u_n$ diverge.
- 7. Montrons que les suites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes : $\forall n\in\mathbb{N}, S_{2(n+1)}-S_{2n}=(-1)^{2n+2}u_{2n+2}+(-1)^{2n+1}u_{2n+1}=u_{2n+2}-u_{2n+1}\leq 0$ (suite u décroissante), et $S_{2(n+1)+1}-S_{2n+1}=(-1)^{2n+3}u_{2n+3}+(-1)^{2n+2}u_{2n+2}=-u_{2n+3}+u_{2n+2}\geq 0$ et $S_{2n+1}-S_{2n}=-u_{2n+1}\underset{n\to+\infty}{\longrightarrow} 0$. Donc les suites (S_{2n}) et (S_{2n+1}) convergent vers la même

limite. On en déduit que la suite (S_n) converge (vers cette même limite) donc la série $\sum_{n>0} (-1)^n u_n$ converge.

Exercice 1:

Question préliminaire :

Montrons par récurrence que pour tout $n \in \mathbb{N}^*$, il existe $a_n \in \mathbb{R}$ tel que M^n ait la forme souhaitée. n=1: au vu de l'expression de M, $a_1=1/2$ convient.

$$h\acute{e}r\acute{e}dit\acute{e}: \text{Supposons que } a_n \text{ existe, et trouvons un réel } a_{n+1} \text{ qui convient.}$$

$$\text{Or } M^{n+1} = M^n M = \begin{pmatrix} a_n & \frac{1}{4} & \frac{1}{2} - a_n \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} - a_n & \frac{1}{4} & a_n \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{4} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}a_n + \frac{1}{8} & \frac{1}{4} & \frac{3}{8} - \frac{1}{2}a_n \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{3}{8} - \frac{1}{2}a_n & \frac{1}{4} & \frac{1}{2}a_n + \frac{1}{8} \end{pmatrix} \text{ En posant } a_{n+1} = \frac{1}{2}a_n + \frac{1}{8},$$
on obtient bien la forme voulue puisque $\frac{1}{2} - a_{n+1} = \frac{1}{2} - \frac{1}{2}a_n - \frac{1}{8} = \frac{3}{8} - \frac{1}{2}a_n$. Ccl .

Il reste à trouver la forme explicite de la suite $(a_n)_n \in \mathbb{N}$, qui est une suite arithméticogéométrique : on résout

Il reste à trouver la forme explicite de la suite $(a_n)_{n\in\mathbb{N}}$, qui est une suite arithméticogéométrique : on résout $\alpha = \frac{1}{2}\alpha + \frac{1}{8} \Leftrightarrow \alpha = \frac{1}{4}$. Alors la suite $(a_n - \frac{1}{4})$ est géométrique de raison $\frac{1}{2}$ et de premier terme $a_1 - \frac{1}{4} = \frac{1}{4}$. D'où $\forall n \in \mathbb{N}^*$, $a_n - \frac{1}{4} = \frac{1}{4} \times (\frac{1}{2})^{n-1}$ (attention la suite part de n = 1) soit $a_n = \frac{1}{4} + \frac{1}{4}(\frac{1}{2})^{n-1} = \frac{1}{4} + (\frac{1}{2})^{n+1}$.

Partie 1:

- 1. Comme toutes les boules sont dans \mathcal{U} , X_0 est la variable certaine N. $X_0(\Omega) = \{N\}$, $E(X_0) = N$ et $V(X_0) = 0$. Quelque soit l'entier choisi, la boule correspondante est dans \mathcal{U} et elle est déplacée avec probabilité a d'où $X_1(\Omega) = \{N-1, N\}, \text{ et } P(X_1 = N-1) = a. \text{ D'où } E(X_1) = a(N-1) + (1-a)N = N-a, E(X_1^2) = a(N-1)^2 + (1-a)N^2 = N^2 - 2aN + a \text{ et } V(X_1) = E(X_1)^2 - (E(X_1))^2 = a - a^2.$
- 2. Au plus deux boules peuvent être déplacées d'où $X_2(\Omega) = \{N-2, N-1, N\}$. Soit les événements pour $i \in \{1, 2\}$, U_i "au i^{ie} tirage on choisit une boule de l'urne U" et D_i "la boule choisie au i^{ie} tirage est déplacée". Alors $(X_2=N-2)=D_1\cap (U_2\cap D_2)$ (l'événement U_1 est certain) d'où $P(X_2=N-2)=P(D_1)P_{D_1}(U_2)P_{D_1\cap U_2}(D_2)=a\times\frac{N-1}{N}\times a$. De même, $(X_2=N-1)=[\overline{D}_1\cap D_2]\cup [D_1\cap \overline{D}_2]$ et $P(X_2=N-1)=2a(1-a)$. On en déduit $P(X_2=N)=1-a^2\frac{N-1}{N}-2a(1-a)$ (ou $(X_2=N)=[\overline{D}_1\cap \overline{D}_2]\cup [D_1\cap \overline{D}_2]$).
- 3. for i=1:n; k=floor(N*rand())+1 // k représente le numéro de la boule choisie : entier entre 1 et N. Il faut décider maintenant si on déplace la boule, et le cas échéant changer la coordonnée u(k) if rand()<a then, u(k)=1-u(k). y=sum(u) (pas de else, car si la boule est maintenue dans l'urne, rien ne change)

Partie 2:

- 1. $\forall k \in \{0, 1, 2\}, P(X_0 = k) = \frac{1}{3}$.
- 2. Sachant $(X_n = 0)$, les 2 boules sont dans l'urne \mathcal{V} (donc la boule choisie sera forcément dans cette urne). De ce fait, $X_{n+1}=1$ ssi la boule est déplacée, et sinon $X_{n+1}=0$. D'où $P_{(X_n=0)}(X_{n+1}=0)=1-a=\frac{1}{2}$, $P_{(X_n=0)}(X_{n+1}=1)=a=\frac{1}{2} \text{ et } P_{(X_n=0)}(X_{n+1}=2)=0. \text{ Sachant } (X_n=1), \text{ l'urne } \mathcal{U} \text{ contient 1 boule sur les 2},$ donc $X_{n+1} = 0$ ssi on choisit cette boule, et qu'on la déplace; $X_{n+1} = 1$ si on ne déplace pas la boule (peu importe la boule choisie) et $X_{n+1}=2$ si on choisit la boule de \mathcal{V} et qu'on la déplace. D'où $P_{(X_n=1)}(X_{n+1}=0)=\frac{1}{2}a=\frac{1}{4}$, $P_{(X_n=1)}(X_{n+1}=1)=1-a=\frac{1}{2}$ et $P_{(X_n=1)}(X_{n+1}=2)=\frac{1}{2}a=\frac{1}{4}$. De même, $P_{(X_n=2)}(X_{n+1}=0)=0$, $P_{(X_n=2)}(X_{n+1}=1)=a=\frac{1}{2}$, $P_{(X_n=2)}(X_{n+1}=2)=1-a=\frac{1}{2}$ remarque: comme a=1-a, il est plus lisible de rédiger avec a (resp. 1-a), puis de remplacer au dernier moment a par sa valeur.

- 3. On applique trois fois la formule des probabilités totales au s.c.e. $((X_n=0),(X_n=1),(X_n=2)):$ $P(X_{n+1}=0)=P(X_n=0)P_{(X_n=0)}(X_{n+1}=0)+P(X_n=1)P_{(X_n=1)}(X_{n+1}=0)+P(X_n=2)P_{(X_n=2)}(X_{n+1}=0)=\frac{1}{2}P(X_n=0)+\frac{1}{4}P(X_n=1)+0.$ De même, $P(X_{n+1}=1)=\frac{1}{2}P(X_n=0)+\frac{1}{2}P(X_n=1)+\frac{1}{2}P(X_n=2)$ et $P(X_{n+1}=2)=0$ $P(X_n=0)+\frac{1}{4}P(X_n=1)+\frac{1}{2}P(X_n=2).$
- 4. On reconnaît une suite géométrique de matrices : $\forall n \in \mathbb{N}^*$, $U_n = M^n U_0 = \begin{pmatrix} a_n & \frac{1}{4} & \frac{1}{2} a_n \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} a_n & \frac{1}{4} & a_n \end{pmatrix} \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}$ d'où $P(X_n = 0) = \frac{1}{3}(a_n + \frac{1}{4} + \frac{1}{2} a_n) = \frac{1}{4}$, et de même $P(X_n = 1) = \frac{1}{2}$ et $P(X_n = 2) = \frac{1}{4}$. Vérifier que la somme fait bien 1 et remarquer que les probabilités sont constantes...

Exercice 2:

- 1. Soit $P \in \mathbb{R}_2[X]$: P s'écrit $P(X) = aX^2 + bX + c$, d'où $P(X+1) = a(X+1)^2 + b(X+1) + c$ et $deg(P(X+1)) \le deg(X+1)^2 = 2$. Comme de plus $deg(XP') = 1 + deg(P') \le 2$, on obtient bien $f(P) \in \mathbb{R}_2[X]$. Il reste à montrer la linéarité de f: soit P_1 , $P_2 \in \mathbb{R}_2[X]$ et $\lambda \in \mathbb{R}$. Alors $f(\lambda P_1 + P_2)(X) = (\lambda P_1 + P_2)(X+1) + X(\lambda P_1 + P_2)'(X) = \lambda P_1(X+1) + P_2(X+1) + \lambda X P_1'(X) + X P_2'(X) = \lambda f(P_1)(X) + f(P_2)(X)$.
- 2. $Im(f) = Vect(f(1), f(X), f(X^2)) = Vect(1, 2X + 1, 3X^2 + 2X + 1)$: famille génératrice de polynômes échelonnés en degré donc libre. Ou $Im(f) = Vect(1, 2X + 1, 3X^2) = \dots = Vect(1, X, X^2) = \mathbb{R}_2[X]$ puis choisir la base canonique de $\mathbb{R}_2[X]$ comme base de Im(f). En particulier, f est surjective.
- 3. Soit $P \in \mathbb{R}_2[X]$: P s'écrit $P(X) = aX^2 + bX + c$ et $f(P)(X) = 3aX^2 + (2a + 2b)X + (a + b + c)$. D'où $P \in Kerf \Leftrightarrow f(P) = 0_{\mathbb{R}_2[X]} \Leftrightarrow \begin{cases} 3a = 0 \\ 2a + 2b = 0 \\ a + b + c = 0 \end{cases} \Leftrightarrow a = b = c = 0$. On en déduit $Kerf = \{0_{\mathbb{R}_2[X]}\}$ et f injective.

D'où f automorphisme de $\mathbb{R}_2[X]$.

- 4. (a) $E_1'(X)=1$ d'où $\exists b\in\mathbb{R}$ tel que $E_1(X)=X+b$. $E_1(1)=2E_1(0)\Leftrightarrow 1+b=2b\Leftrightarrow b=1$ et finalement, $E_1(X)=X+1$. De même, $E_2(X)=\frac{1}{2}X^2+X+\frac{3}{4}$
 - (b) Soit $P(X) = aX^2 + bX + c \in \mathbb{R}_2[X]$. Montrons qu'il existe un unique triplet $(\alpha_0, \alpha_1, \alpha_2) \in \mathbb{R}^3$ tel que $\alpha_0 E_0 + \alpha_1 E_1 + \alpha_2 E_2 = P$ càd tel que $\frac{1}{2}\alpha_2 X^2 + (\alpha_2 + \alpha_1)X + (\alpha_2 \frac{3}{4} + \alpha_1 + \alpha_0) = aX^2 + bX + c$. Par unicité de l'écriture d'un polynôme, on obtient : $\begin{cases} \alpha_2 = 2a \\ \alpha_1 = b 2a \end{cases}$ Unique solution donc la famille \mathcal{B} est bien une $\alpha_0 = c b + \frac{1}{2}a$

base de $\mathbb{R}_2[X]$. En particulier avec le polynôme $Q(X) = X^2 + X + 1$, a = b = c = 1 d'où $\alpha_0 = \frac{1}{2}$, $\alpha_1 = -1$ et $\alpha_2 = 2 : Q = \frac{1}{2}E_0 - E_1 + 2E_2$.

(c) On utilise 2. et la linéarité de $f: f(E_0) = 1 = E_0$; $f(E_1) = f(X) + f(1) = 2X + 1 + 1 = 2E_1$ et $f(E_2) = \frac{1}{2}f(X^2) + f(X) + \frac{3}{4}f(1) = \frac{1}{2}(3X^2 + 2X + 1) + 2X + 1 + \frac{3}{4} = 3E_2$. On cherche P tel que f(P) = Q càd tel que $f(P) = \frac{1}{2}E_0 - E_1 + 2E_2$. Au vu des images calculées, on devine $P = \frac{1}{2}E_0 - \frac{1}{2}E_1 + \frac{2}{3}E_2$ car alors $f(P) = \frac{1}{2}f(E_0) - \frac{1}{2}f(E_1) + \frac{2}{3}f(E_3) = \frac{1}{2}E_0 - E_1 + 2E_2 = Q$.

Exercice 3:

- 1. (a) f est continue sur \mathbb{R} donc sur tout [-x,x], avec $x \in \mathbb{R}$ donc l'intégrale $\int_{-x}^{x} f(t)dt$ existe pour tout $x \in \mathbb{R}$.
 - (b) Comme f est continue sur \mathbb{R} , f admet une primitive F sur \mathbb{R} . Alors pour tout $x \neq 0$, $g(x) = \frac{1}{2x}(F(x) - F(-x))$. Comme F est continue sur \mathbb{R} (même C^1 car primitive de f sur \mathbb{R}), on en déduit que g est continue sur \mathbb{R}^* . Continuité en 0: comme F est dérivable en 0, on obtient $g(x) = \frac{1}{2} \left[\frac{F(x) - F(0)}{x - 0} + \frac{F(-x) - F(0)}{-x - 0} \right] \xrightarrow[x \to 0]{1} \frac{1}{2} \left[F'(0) + F'(0) \right] = F'(0) = g(0)$. D'où g continue en $g(x) = \frac{1}{2} \left[\frac{F(x) - F(0)}{x - 0} + \frac{F(-x) - F(0)}{-x - 0} \right] \xrightarrow[x \to 0]{1} \frac{1}{2} \left[F'(0) + \frac{F'(0)}{x - 0} + \frac{F'(0)}{x - 0} \right] = \frac{1}{2} \left[\frac{F(x) - F(0)}{x - 0} + \frac{F'(0)}{x - 0} \right]$
 - (c) g est définie sur \mathbb{R} : g(-0)=g(0), puis pour $x\neq 0, -x\neq 0$ et $g(-x)=\frac{1}{-2x}\int_x^-x f(t)dt=\frac{-1}{-2x}\int_{-x}^x f(t)dt=\frac{1}{2x}\int_{-x}^x f(t)dt=g(x)$. Supposons f impaire, montrons que g est la fonction nulle : si f est impaire alors f(0)=0 d'où g(0)=0. Puis pour $x\neq 0, \ g(x)=\frac{1}{2x}[\int_{-x}^0 f(t)dt+\int_0^x f(t)dt]=\frac{1}{2x}[\int_x^0 f(-u)(-du)+\int_0^x f(t)dt]=\frac{1}{2x}[-\int_0^x f(u)du+\int_0^x f(t)dt]=0$. (en ayant posé u=-t).
 - (d) $a(0) = \frac{f(0) + f(-0)}{2} = f(0) = g(0)$ et pour $x \neq 0$, $\frac{1}{x} \int_0^x a(t) dt = \frac{1}{2x} [\int_0^x f(t) dt + \int_0^x f(-t) dt] = \frac{1}{2x} [\int_0^x f(t) dt + \int_0^x f(u) (-du)] = \frac{1}{2x} [\int_0^x f(t) dt + \int_{-x}^0 f(u) du] = g(x)$.
 - (e) comme a est continue sur \mathbb{R} (somme et composée de fonctions continues sur \mathbb{R}), $A: x \mapsto \int_0^x a(t)dt$ est l'unique primitive de a qui s'annule en 0. En particulier, A est dérivable sur \mathbb{R} , d'où par produit g est dérivable sur \mathbb{R}^* (puisque pour tout $x \in \mathbb{R}^*$, $g(x) = \frac{1}{x}A(x)$. De plus, $\forall x \in \mathbb{R}$, $g'(x) = -\frac{1}{x^2}A(x) + \frac{1}{x}A'(x)$ càd $xg'(x) = -\frac{1}{x}A(x) + a(x)$ soit encore xg'(x) + g(x) = a(x). Ou via l'expression en F, mais calculs plus longs.
 - (f) Attention, prendre la dernière forme trouvée de g, pas la définition!(calculs beaucoup plus difficiles car sur [-x,x] le signe de t change, même si x>0). Pour x>0, $g(x)=\frac{1}{x}\int_0^x\frac{|t|+|-t|}{2}dt=\frac{1}{x}\int_0^xtdt=\frac{1}{x}[\frac{1}{2}t^2]_0^x=\frac{1}{2}x$ et pour x<0, $g(x)=\frac{1}{x}\int_0^x\frac{|t|+|-t|}{2}dt=\frac{1}{x}\int_0^x\frac{|t|+|-t$

- $\frac{1}{x}\int_0^x -tdt = -\frac{1}{2}x$ et pour x=0, g(0)=0. D'où pour tout $x\in\mathbb{R},$ $g(x)=\frac{1}{2}|x|$ donc n'est pas dérivable en 0 (est dérivable à droite en 0 avec $g_d'(0)=\frac{1}{2}$ et dérivable à gauche en 0 avec $g_g'(0)=-\frac{1}{2}\neq g_d'(0)$
- 2. (a) Soit $x_0 \in \mathbb{R}$. Alors pour $x \neq x_0$, $|f(x) f(x_0)| < |x x_0| \underset{x \to x_0}{\longrightarrow} 0$ d'où par encadrement, $f(x) \underset{x \to x_0}{\longrightarrow} f(x_0)$.
 - (b) Pour x=0: $\int_0^1 a(0)du=a(0)[u]_0^1=a(0)=g(0)$. Puis pour $x\neq 0$, posons t=ux alors dt=xdu et les bornes deviennent : $u=0\Rightarrow t=0$ et $u=1\Rightarrow t=x$ d'où $\int_0^1 a(ux)du=\int_0^x a(t)\frac{dt}{x}=\frac{1}{x}\int_0^x a(t)dt=g(x)$ (ou dans l'autre sens, poser $u=\frac{t}{x}$).
 - (c) Pour $v \neq w$, $|a(v) a(w)| = \frac{1}{2}|f(v) + f(-v) f(w) f(-w)| = \frac{1}{2}|f(v) f(w) + f(-v) f(-w)|$ $\leq \frac{1}{2}(|f(v) f(w)| + |f(-v) f(-w)|) \text{ (inégalité triangulaire)}$ $< \frac{1}{2}(|v w| + |v v|) = |v w|.$ D'où $|g(x) g(y)| = |\int_0^1 (a(xu) a(yu))du| \leq \int_0^1 |a(xu) a(yu)|du \text{ (inégalité triangulaire, car } 0 \leq 1)$ $< \int_0^1 |xu yu|du \text{ (car } 0 < 1 \text{ et pour tout } u \in]0,1], xu \neq yu \text{ donc on peut utiliser ce qui précède)}$ $= \int_0^1 u|x y|du = |x y|\int_0^1 udu = |x y|[\frac{1}{2}u^2]_0^1 = \frac{1}{2}|x y| < |x y|.$
- 3. (a) Dans la question 1., on a montré que si f était continue sur \mathbb{R} , alors la fonction g correspondante l'était aussi : donc si $f \in E$, $\Phi(f) \in E$.

 Il reste à montrer la linéarité : soit $f_1, f_2 \in E$ et $\lambda \in \mathbb{R}$. Montrons que $\Phi(\lambda f_1 + f_2) = \lambda \Phi(f_1) + \Phi(f_2)$.

 En x = 0 : $\Phi(\lambda f_1 + f_2)(0) = \lambda f_1(0) + f_2(0)$ (par définition) $= \lambda \Phi(f_1)(0) + \Phi(f_2)(0)$.

 Puis pour tout $x \in \mathbb{R}^*$, $\Phi(\lambda f_1 + f_2)(x) = \frac{1}{2x} \int_{-x}^x \lambda f_1(t) + f_2(t) dt = \frac{1}{2x} [\lambda \int_{-x}^x f_1(t) dt + \int_{-x}^x f_2(t) dt]$ par linéarité de l'intégrale $= \lambda \frac{1}{2x} \int_{-x}^x f_1(t) dt + \frac{1}{2x} \int_{-x}^x f_2(t) dt = \lambda \Phi(f_1)(x) + \Phi(f_2)(x)$.
 - (b) On a montré en 1. f) que si f est impaire alors $\Phi(f)=0$ donc {fonctions continues impaires} $\subset Ker(\Phi)$, et Φ non injective. Montrons l'inclusion réciproque : soit $f\in Ker(\Phi)$, et posons $g=\Phi(f)$. Donc $\forall x\in\mathbb{R}$, $g(x)=\Phi(f)(x)=0$. En particulier, f(0)=g(0)=0. Et pour tout $x\neq 0$, a(x)=xg'(x)+g(x)=0+0=0 via 1.(e) (puisque g étant la fonction nulle, g' l'est aussi). D'où $\forall x\in\mathbb{R}^*$, $f(x)+f(-x)=0 \Leftrightarrow f(-x)=-f(x)$. On obtient bien que f est impaire sur \mathbb{R} .
 - (c) D'après 1.(c), pour toute fonction f continue, la fonction g est continue et paire. D'où $Im(\Phi) \subset \{\text{fonctions continues paires}\}$. En particulier la fonction sinus n'a pas d'antécédents, donc Φ n'est pas surjective.
 - (d) i) Posons $f: x \mapsto ax^2 + bx + c$ et $g = \Phi(f)$. Alors g(0) = f(0) = c et pour $x \neq 0$, $g(x) = \frac{1}{x} \int_0^x (f(t) + f(-t)) dt = \frac{1}{x} \int_0^x (2at^2 + c) dt = \frac{1}{x} [\frac{2}{3}at^3 + ct]_0^x = \frac{2}{3}ax^2 + c$. Finalement, pour tout $x \in \mathbb{R}$, $g(x) = \frac{2}{3}ax^2 + c$ d'où $g = \Phi(f) \in F$.
 - ii) D'après le calcul précédent, $\varphi(f)=0 \Leftrightarrow \begin{cases} \frac{2}{3}a=0 \\ c=0 \end{cases}$ et $Ker(\varphi)=\{x\mapsto bx,\in\mathbb{R}\}=Vect(x\mapsto x)$, famille libre car un seul vecteur non nul. Puis $Im(\varphi)=Vect(\varphi(x\mapsto 1),\varphi(x\mapsto x),\varphi(x\mapsto x^2))$ = $Vect(x\mapsto 1,x\mapsto 0,x\mapsto \frac{2}{3}x^2)=Vect(x\mapsto 1,x\mapsto x^2)$ (famille libre, car échelonnée en degrés)