Eléments de correction du concours blanc

Exercice 1:

- 1. (a) $J^2 = I$ donc $J \times J = I$ donc J est inversible d'inverse $J^{-1} = J$.
 - (b) Il suffit de montrer la linéarité : pour tout M et $N \in \mathcal{M}_2(\mathbb{R})$ et α réel, $S(\alpha M+N)=J(\alpha M+N)J=\alpha JMJ+JNJ=\alpha S(M)+S(N).$ Noyau de S: Soit $M \in KerS$. Alors $JMJ=0 \Rightarrow$ (mult. à droite par J^{-1}) $JM=0 \Rightarrow M=0$. Donc $KerS=\{0\}$ et S est injective. Comme on est en dimension finie, S est bijective. Automorphisme réciproque : Soit $A \in \mathcal{M}_2(\mathbb{R})$. On résout S(M)=A. Or $JMJ=A \Leftrightarrow M=J^{-1}AJ^{-1}=JAJ=S(A)$. D'où $S^{-1}=S$. (ou réaliser que $J^2=I\Rightarrow S\circ S=id$ d'où S est bijective de réciproque $S^{-1}=S$!)
 - (c) pour $M, N \in \mathcal{M}_2(\mathbb{R})$, S(M)S(N) = JMJJNJ = JMINJ = JMNJ = S(MN) car $J^2 = I$.
- 2. Soient x, y, z et t réels tels que xI + yJ + zK + tL = 0. Alors $\begin{cases} x + z = 0 & x z = 0 \\ y + t = 0 & y t = 0 \end{cases}$ d'où x = y = z = t = 0Donc la famille est libre de cardinal 4 dans $\mathcal{M}_2(\mathbb{R})$, qui est de dimension 4, donc est une base de $\mathcal{M}_2(\mathbb{R})$.
- 3. $S(I) = JIJ = J^2 = I$, $S(J) = J^3 = J$ et après calculs, on trouve $S(K) = \dots = -K$ et $S(L) = \dots = -L$.

La matrice de S dans la base (I,J,K,L) est donc : $\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right)$

- 4. (a) $\mathcal{F} \subset \mathcal{M}_2(\mathbb{R})$, et comme S(0) = 0 car S est linéaire, on trouve $0 \in \mathcal{F}$ donc $\mathcal{F} \neq \emptyset$. Soit $M, N \in \mathcal{F}$ et $\lambda \in \mathbb{R}$: comme S est linéaire, $S(\lambda M + N) = \lambda S(M) + S(N) = \lambda M + N$ (car $M, N \in \mathcal{F}$). D'où $\lambda M + N \in \mathcal{F}$.
 - (b) Soit M ∈ M₂ (ℝ) : on raisonne par analyse et synthèse.
 Supposons qu'une telle décomposition existe alors M = M₊ + M₋ avec M₊ ∈ F et M₋ ∈ G.
 On en déduit (par linéarité) que S (M) = S (M₊) + S (M₋) = M₊ M₋ d'où (système à 2 équations 2 inconnules) M₊ = ½ (M + S (M)) et M₋ = ½ (M S (M)). D'où l'unicité.
 Synthèse : soit à présent M₊ = ½ (M + S (M)) et M₋ = ½ (M S (M)). Ces valeurs conviennent-elle?
 S (M₊) = ½ [S (M) + S (S (M))] et comme S ∘ S = id, on obtient S (M₊) = ½ (S (M) + M) = M₊ donc M₊ ∈ F.

De même $S(M_{-}) = -M_{-}$ et $M_{-} \in \mathcal{G}$; et on a bien $M_{+} + M_{-} = M$. Conclusion : M_{+} et M_{-} existent et sont uniques. On en déduit que $\mathcal{F} \bigoplus \mathcal{G} = \mathcal{M}_{2}(\mathbb{R})$.

- (c) Après calculs, on trouve $S(A) = \begin{pmatrix} -2 & 1 \\ -1 & 3 \end{pmatrix}$ Donc $A_{+} = \frac{1}{2} \begin{bmatrix} \begin{pmatrix} 3 & -1 \\ 1 & -2 \end{pmatrix} + \begin{pmatrix} -2 & 1 \\ -1 & 3 \end{pmatrix} \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et $A_{-} = \frac{1}{2} \begin{bmatrix} \begin{pmatrix} 3 & -1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ -1 & 3 \end{pmatrix} \end{bmatrix} = \frac{1}{2} \begin{pmatrix} 5 & -2 \\ 2 & -5 \end{pmatrix}$
- 5. (a) Par 1.c) si $M, N \in \mathcal{F}$ alors S(MN) = S(M)S(N) = MN donc $MN \in \mathcal{F}$. Si M et N appartiennent à \mathcal{G} alors S(MN) = -M(-N) = MN donc $MN \in \mathcal{F}$. et si l'un est dans \mathcal{F} et l'autre dans G, le produit est dans \mathcal{G} .
 - (b) Soient $M, N \in \mathcal{M}_2(\mathbb{R})$, alors $MN = (M_+ + M_-)(N_+ + N_-) = M_+N_+ + M_+N_- + M_-N_+ + M_-N_-$ = $(M_+N_+ + M_-N_-) + (M_+N_- + M_-N_+)$. Or par 4.a) et 5.a) $(M_+N_+ + M_-N_-) \in \mathcal{F}$ et $(M_+N_- + M_-N_+) \in \mathcal{G}$ donc par unicité d'une telle décomposition, on obtient $(MN)_+ = M_+N_+ + M_-N_-$ et $(MN)_- = M_+N_- + M_-N_+$

Exercice 2:

- 1. (a) Montrons que f est un endomorphisme de ${\bf E}$:
 - * Pour tout couple (P_1, P_2) de E, tout réel λ , $f(\lambda P_1 + P_2)(X) = -nX (\lambda P_1 + P_2)(X) + X^2 (\lambda P_1' + P_2')(X)$ $= \lambda \left(-nXP_1(X) + X^2P_1'(X) \right) + \left(-nXP_2(X) + X^2P_2'(X) \right) = \lambda f(P_1)(X) + f(P_2)(X)$ donc f est linéaire * De plus, si $P(X) = a_nX^n + a_{n-1}X^{n-1} + ... + a_1X + a_0 \in \mathbb{R}_n[X]$, alors $f(P)(X) = -na_nX^{n+1} - na_{n-1}X^n - ... - na_1X^2 - na_0X + X^2(na_nX^{n-1} + (n-1)a_{n-1}X^{n-2} + ... + a_1)$ $= 0 - a_{n-1}X^n + ... + (1-n)a_1X^2 - na_0X \in \mathbb{R}_n[X]$ ce qui confirme que f est bien un endomorphisme de E.
 - (b) On a f(1) = -nX, $f(X) = (1-n)X^2$, et plus généralement, pour tout $k \in [0, n]$, $f(X^k) = (k-n)X^{k+1}$. En particulier, $f(X^n) = 0$. On en déduit que dans la matrice M, les seuls coefficients non-nuls sont sur la "sous" diagonale qui contient les coefficients -n, 1-n, 2-n,..., -1. Comme la matrice M est triangulaire avec des 0 sur la diagonale, M n'est pas inversible donc f n'est pas bijectif.
 - (c) $Im(f) = Vect(f(1), f(X), f(X^2), ..., f(X^{n-1}), f(X^n)) = Vect(X, X^2, ..., X^n)$ donc rg(f) = n (sous famille de la base canonique, donc libre).