Exercice 1:

Résoudre l'équation d'inconnue $x \in \mathbb{R} : \sqrt{x+23} - x - 3 = 0$

Exercice 2: On donne $0.69 < \ln 2 < 0.70$.

- 1. Question préliminaire :
 - (a) Montrer que l'équation $x^2 + \ln x = 0$ admet une unique solution sur $]0, +\infty[$. On la notera α .
 - (b) Montrer que $\frac{1}{2} < \alpha < 1$.

Dans toute la suite, on considère la fonction f définie sur $[\frac{1}{2},1]$ par : $\forall x \in [\frac{1}{2},1], f(x) = x - \frac{1}{4}x^2 - \frac{1}{4}\ln x.$

- 2. (a) Dresser le tableau de variations complet de f.
 - (b) En déduire que pour tout $x \in [\frac{1}{2}, 1], f(x) \in [\frac{1}{2}, 1].$
- 3. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N},$ $u_{n+1}=f(u_n).$ (indication : garder la lettre f!)
 - (a) calculer u_1 .
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $u_n \in [\frac{1}{2}, 1]$.
 - (c) Déterminer la monotonie de la suite.
 - (d) Montrer alors que la suite converge, et déterminer sa limite.

Pour ceux qui veulent en faire plus :

plus facile : Résoudre l'équation $6e^{5x+2} - 7\sqrt{e^{8x+4}} + e^{3x+2} = 0$ plus difficile : Résoudre, selon le paramètre $m \in \mathbb{R}$, l'inéquation d'inconnue $x : \frac{x}{m-1} - \frac{3x-1}{2} > \frac{x+2}{4(m-1)}$.

Devoir à la maison 2

à rendre le lundi 19 septembre 2016

Exercice 1:

Résoudre l'équation d'inconnue $x \in \mathbb{R} : \sqrt{x+23} - x - 3 = 0$

Exercice 2: On donne $0.69 < \ln 2 < 0.70$.

- 1. Question préliminaire :
 - (a) Montrer que l'équation $x^2 + \ln x = 0$ admet une unique solution sur $]0, +\infty[$. On la notera α .
 - (b) Montrer que $\frac{1}{2} < \alpha < 1$.

Dans toute la suite, on considère la fonction f définie sur $[\frac{1}{2},1]$ par : $\forall x \in [\frac{1}{2},1], f(x) = x - \frac{1}{4}x^2 - \frac{1}{4}\ln x$.

- 2. (a) Dresser le tableau de variations complet de f.
 - (b) En déduire que pour tout $x \in [\frac{1}{2}, 1], f(x) \in [\frac{1}{2}, 1].$
- 3. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=f(u_n)$. (indication : garder la lettre f!)
 - (a) calculer u_1 .
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $u_n \in [\frac{1}{2}, 1]$.
 - (c) Déterminer la monotonie de la suite.
 - (d) Montrer alors que la suite converge, et déterminer sa limite.

Pour ceux qui veulent en faire plus :

plus facile: Résoudre l'équation $6e^{5x+2} - 7\sqrt{e^{8x+4}} + e^{3x+2} = 0$ plus difficile: Résoudre, selon le paramètre $m \in \mathbb{R}$, l'inéquation d'inconnue $x: \frac{x}{m-1} - \frac{3x-1}{2} > \frac{x+2}{4(m-1)}$.