DEVOIR SURVEILLE 2

On rappelle que $e^x = 1 + x\alpha(x)$ avec $\lim_{x\to 0} \alpha(x) = 1$.

Exo I. Une classe comporte 45 étudiants, dont 24 filles, avec 20 internes dont 15 garçons

- 1. A chaque scéance de cours, le professeur de mathématiques interroge au hasard trois étudiants l'un après l'autre.
 - a. Combien y a t'il de façons de procéder?
 - b. Combien y a t'il de façons de procéder, avec deux garçons interrogés ?
 - c. Combien y a t'il de façons de procéder avec au plus un garçon interrogé?
- 2. Le professeur procède à l'élection de deux délégués.
 - a. Combien y a-t-il de choix de délégués possibles ?
 - b. Combien y a t-il de choix de deux délégués internes?
 - c. Combien y a t-il de choix avec exactement un délégué fille externe ?
- 3. A la fin de 5 cours, le professeur demande à un étudiant de nettoyer le tableau.
 - a. Combien y a t'il de façon de procéder, pour que le nettoyage ait été effectué au moins une fois par une fille ?
 - b. Combien y a t'il de façon de procéder, pour que le nettoyage soit fait exactement 3 fois par l'un ou l'autre des 2 super bluffeurs de la classe ?
 - c. Combien y a t'il de façon de procéder, pour que les noms des élèves désignés respectent l'ordre croissant de l'alphabet
- **Exo II.** Soient $n \in \mathbb{N}^*$ et $x_1, \dots x_n$ des réels strictement positifs. L'objectif est d'établir l'inégalité arithmético-géométrique :

$$\left(\prod_{k=1}^{n} x_k\right)^{\frac{1}{n}} \leqslant \frac{1}{n} \sum_{k=1}^{n} x_k$$

- 1. Pour tout réel x > 0, montrer que $\ln x \le x 1$.
- 2. On pose $m = \frac{1}{n} \sum_{k=1}^{n} x_k$. Montrer que m > 0 et que $\sum_{k=1}^{n} \left(\frac{x_k}{m} 1\right) = 0$.
- 3. En déduire que $\sum_{k=1}^{n} \ln \left(\frac{x_k}{m} \right) \leq 0$ et conclure.

Exo III. Pour
$$n \ge 1$$
, on pose $S_n = \sum_{k=1}^n \frac{1}{k}$

- 1. Montrer que la suite (S_n) est croissante
- 2. Montrer que $S_{2n} S_n \ge \frac{1}{2}$ pour $n \ge 1$.
- 3. En déduire que (S_n) ne peut pas converger, puis que (S_n) tends vers $+\infty$.
- 4. SCILAB : ecrire un programme qui demande un nombre réel M à l'utilisateur et qui renvoie le premier indice n pour lequel $S_n \geqslant M$.

- **Exo IV.** SCILAB : Ecrire un programme demandant un entier n à l'utilisateur et affichant la valeur de $S = \sum_{k=2}^n \frac{1}{k^2+1}$.
- **Exo V.** On considère la fonction f définie sur \mathbb{R}^+ par

$$f(0) = 1$$
 et $f(x) = x^x$ $(x > 0)$

- 1. Vérifier que f est continue et dérivable sur \mathbb{R}_{+}^{*} .
- 2. Montrer que f est continue (à droite) en 0. Calculer $\lim_{\substack{x\to 0\\x\neq 0}} \frac{f(x)-f(0)}{x-0}$.
- 3. Dresser le tableau de variation de f
- 4. Montrer que g, la restriction de f au départ à l'intervalle $I = [\frac{1}{e}, +\infty[$, réalise une bijection de I sur un intervalle J que l'on précisera.
- 5. Montrer qu'il existe une application $\varphi: J \to I$ vérifiant

$$\varphi(x)^{\varphi(x)} = x \qquad (x \in J)$$

- 6. Démontrer que $\lim_{x \to +\infty} \frac{\varphi(x)}{\ln(x)} = 0$.
- Exo VI. Par convention, on pose

$$\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{si } 0 \leqslant k \leqslant n \\ 0 & \text{si } k > n \end{cases}$$

Pour $n \in \mathbb{N}$, on pose alors $\varphi_n = \sum_{k=0}^n \binom{n-k}{k}$

- 1. Calculez φ_n pour $0 \leqslant n \leqslant 5$.
- 2. Pour $n \ge 0$, établir que $\varphi_n + \varphi_{n+1} = \varphi_{n+2}$.
- 3. Pour $n \in \mathbb{N}$, en déduire que

$$\varphi_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right)$$

4. En utilisant la formule du binôme deux fois, prouver alors que

$$\varphi_n = \frac{1}{2^n} \sum_{0 \le 2p+1 \le n+1} \binom{n+1}{2p+1} 5^p \qquad (n \in \mathbb{N})$$

- 5. Calculez φ_{11} .
- 6. Démontrez que

$$\varphi_n^2 - \varphi_{n+1}\varphi_{n-1} = (-1)^n \qquad (n \in \mathbb{N}^*)$$

Exo VII. On considère les deux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ uniquement définies par la donnée de $b_0>a_0>0$ et par

$$\begin{cases} a_{n+1} &= \frac{a_n + b_n}{2} \\ b_{n+1} &= \sqrt{a_{n+1}b_n} \end{cases} \quad (n \geqslant 0)$$

- 1. Pour $n \in \mathbb{N}$, prouver que $a_n > 0$ et $b_n > 0$
- 2. Pour $n \ge 0$, établir que

$$b_{n+1} - a_{n+1} = \frac{\sqrt{a_{n+1}}}{2(\sqrt{b_n} + \sqrt{a_{n+1}})} (b_n - a_n)$$

- 3. Pour $n \ge 0$, montrer que $a_n \le b_n$
- 4. En déduire le sens de variation des suites (a_n) et (b_n)
- 5. Pour $n \ge 0$, montrer que $0 \le b_n a_n \le \frac{b-a}{2^n}$
- 6. Montrer que les suites (a_n) et (b_n) sont adjacentes
- 7. SCILAB : compléter le script suivant afin qu'il affiche a_n et b_n pour $a_0 = 1$ et $b_0 = 2$ lorsque n est entré par l'utilisateur

```
n=input("entrer n")
a = 1; b = 2;
for k = .....
b = .....
end
disp(.....)
```

8. SCILAB : transformer le programme précédent en fonction « suitesfofolles » qui renvoie a_n et b_n lorsque l'utilisateur rentre n.