DEVOIR SURVEILLE 5

Exo I. ESPACES VECTORIELS I. Dans cet exercice, on note $\mathcal{B} = (i,j,k)$ la base canonique de \mathbb{R}^3 et f l'endomorphisme de \mathbb{R}^3 dont la matrice dans \mathcal{B} est

$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- 1. Déterminer le rang, le noyau et l'image de f
- 2. Déterminer le noyau de $f-\mathrm{Id}_{\mathbb{R}^3}$. On note u un vecteur non nul de ce noyau
- 3. Calculer f(v) et f(w) en fonction de v = (1, -1, 1) et w = (4, 2, 1).
- 4. Montrer que $\mathcal{C} = (u, v, w)$ est une base de \mathbb{R}^3
- 5. Déterminer (sans calcul) la matrice D de f dans la base C.
- 6. Calculer les produits AP et PD ou $P \in \mathcal{M}_3(\mathbb{R})$ est la matrice (des coordonnées) des vecteurs u, v, w dans la base canonique \mathcal{B} .
- 7. Montrer que l'on a $f \circ f \circ f = 2f \circ f + f 2\operatorname{Id}_{R^3}$.

Exo II. ESPACES VECTORIELS II. On fixe $n \ge 4$ et on pose

$$\forall P \in \mathbb{R}_{n+2}[X], \qquad u(P) = (P(0), P'(1))$$

- 1. a. Montrer que $u: P \mapsto u(P)$ définit une application linéaire de $\mathbb{R}_{n+2}[X]$ dans \mathbb{R}^2 .
 - b. En déduire que $F = \{P \in \mathbb{R}_{n+2}[X] : P(0) = 0 = P'(1)\}$ est un \mathbb{R} -EV.
- 2. a. Calculer u(X) et u(1)
 - b. En déduire que u est surjective
- 3. Pour $0 \le k \le n$, on pose $L_k = X^{k+2} (k+2)X$
 - a. Pour $0 \le k \le n$, montrer que $L_k \in F$
 - b. Montrer que $(L_0, L_1, ..., L_n)$ est une base de F
- 4. Pour $P \in F$, on pose $\Delta(P) = P''(X)$.
 - a. Montrer que $\Delta: P \mapsto \Delta(P)$ définit une application linéaire de F dans $\mathbb{R}_n[X]$.
 - b. Déterminer $\ker(\Delta)$.
 - c. En déduire que Δ est un isomorphisme de F dans $\mathbb{R}_n[X]$
- 5. Pour $P \in \mathbb{R}_n[X]$, on note f(P) = Q où $Q \in \mathbb{R}[X]$ est l'unique polynôme vérifiant

$$\forall x \in \mathbb{R},$$
 $Q(x) = \int_0^x t P(t) dt - x \int_1^x P(t) dt$

- a. Montrer que $f: P \mapsto f(P)$ est une application linéaire de $\mathbb{R}_n[X]$ dans $\mathbb{R}[X]$.
- b. pour $0 \le k \le n$, montrer que $f(X^k) = \lambda_k L_k$ où λ_k est un nombre réel à déterminer en fonction de k.
- c. En déduire que $f \in \mathcal{L}(\mathbb{R}_n[X], F)$.
- d. Prouver que f est un isomorphisme de $\mathbb{R}_n[X]$ dans F.
- 6. a. A l'aide d'une intégration par partie, prouver que $f(P'') = \lambda P$ avec λ nombre réel à préciser
 - b. A l'aide de ce qui précède, déterminer Δ^{-1} en fonction de f

Exo III. PROBAS. Soit $n \in \mathbb{N}^*$.

On tire une boule avec remise dans une urne contenant n boules numérotées de 1 à n. Pour $k \in \mathbb{N}^*$, on note X_k le numéro de la boule obtenue au $k^{\text{ième}}$ tirage et S_k la somme des numéros obtenus lors des k premiers tirages

$$S_k = \sum_{i=1}^k X_i$$

On note T_n le nombre de tirages nécessaires pour que, pour la première fois, la somme des numéros des boules obtenues soit supérieure ou égale à n.

Exemple. Pour n = 10, si l'on tire les boules 2, 4, 1, 5, 9, dans cet ordre, alors on a $S_1 = 2$, $S_2 = 6$, $S_3 = 7$, $S_4 = 12$, $S_5 = 21$ et $T_{10} = 4$.

PARTIE A

- 1. Pour $k \in \mathbb{N}^*$, déterminer la loi de X_k ainsi que son espérance
- 2. a. Déterminer $T_n(\Omega)$
 - b. Calculer $P(T_n = 1)$ et $P(T_n = n)$
- 3. Dans cette question n=2. Donner la loi de T_2
- 4. Dans cette question n=3. Donner la loi de T_3 et calculer $E(T_3)$

PARTIE B

- 1. Pour $k \in \mathbb{N}^*$, déterminer $S_k(\Omega)$
- 2. Soit $k \in [1, n-1]$.
 - a. Exprimer S_{k+1} en fonction de S_k et de X_{k+1}
 - b. En unilisant un système complet d'événements liés à S_k , démontrer que

$$P(S_{k+1} = i) = \frac{1}{n} \sum_{j=k}^{i-1} P(S_k = j)$$
 $(k+1 \le i \le n)$

- 3. a. Pour $k \in \mathbb{N}^*$ et $j \in \mathbb{N}^*$, rappeler la formule de Pascal liant $\binom{j-1}{k-1}$, $\binom{j-1}{k}$ et $\binom{j}{k}$
 - b. Pour $i\in\mathbb{N}^*$ et $k\in[\![0,\!i-1]\!],$ en déduire que

$$\sum_{j=k}^{i-1} {j-1 \choose k-1} = {i-1 \choose k}$$

c. Pour $1 \le k \le n$, prouver par récurrence la proposition

$$\mathcal{H}_k$$
: $\forall i \in [k,n] \quad P(S_k = i) = \frac{1}{n^k} \binom{i-1}{k-1}$

- 4. a. Pour $1 \leq k \leq n-1$, comparer les événements $(T_n > k)$ et $(S_k \leq n-1)$
 - b. Pour $0 \le k \le n$, en déduire que $P(T_n > k) = \frac{1}{n^k} \binom{n-1}{k}$
- 5. Démontrer que $E(T_n) = \sum_{k=0}^{n-1} P(T_n > k)$ puis que $E(T_n) = \left(1 + \frac{1}{n}\right)^{n-1}$
- 6. En utilisant que $\ln(1+u) = u\alpha(u)$ avec $\lim_{u\to 0} \alpha(u) = 1$, calculer $\lim_{n\to +\infty} E(T_n)$

Exo IV. On rappelle que f est dérivable en 0, avec f(0) = a et f'(0) = b, si, et seulement si,

$$f(x) = a + bx.\varepsilon(x)$$
 avec $\lim_{x\to 0} \varepsilon(x) = 1$

On pose F(0) = 1 et

$$F(x) = \frac{1}{x} \int_0^x \frac{1}{\sqrt{1 + t^4}} dt$$
 $(x \neq 0)$

- 1. a. Pour $x \neq 0$, montrer que le nombre F(x) est bien défini.
 - b. Pour x > 0, établir que $0 \le F(x) \le 1$.
 - c. Etudier la parité de F (on pourra procéder à un changement de variable)
 - d. Montrer que F est de classe \mathcal{C}^1 sur $]0, +\infty[$ et établique que

$$xF'(x) = -F(x) + \frac{1}{\sqrt{1+x^4}}$$
 $(x > 0)$

- e. Sur $]0, +\infty[$, établir que $\frac{1}{\sqrt{1+x^4}} \le F(x)$ puis que F est décroissante.
- 2. a. Montrer que F est continue en 0
 - b. (très difficile) Pour $u \ge 0$ et $r(u) = \frac{1}{\sqrt{1+u}} \left(1 \frac{u}{2}\right)$, établir que

$$0\leqslant r(u)\leqslant \frac{3}{8}u^2$$

c. En déduire qu'il existe des nombres réels $(a_k)_{0 \le k \le 7}$ tels que

$$F(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + x^7 \cdot \varepsilon(x) \text{ avec } \lim_{x \to 0} \varepsilon(x) = 0$$

Indication : calculer la premiere intégrale et majorer la seconde dans

$$F(x) = \frac{1}{x} \int_0^x \left(1 + \frac{t^4}{2} \right) dt + \frac{1}{x} \int_0^x r(t^4) dt,$$

d. En déduire que F est dérivable en 0 et déterminer F'(0).

Exo V. SCILAB.

1. On execute le programme suivant :

Comment peut on interpretrer le résultat suivant :

2. On considère la matrice $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ Compléter l'instruction Scilab de

la deuxième ligne (avec les tirets) afin de définir cette matrice sous Scilab.

3. On considère deux suites réelles définies par la donnée de $u_0 = \alpha$ et par

$$u_{n+1} = \frac{\sqrt{2 + \sqrt{u_n}}}{2}$$
 $v_{n+1} = \frac{\sqrt{2 - \sqrt{u_n}}}{2}$ $(n \ge 0)$

Compléter la fonction Scilab suivante (sachant que les tirets peuvent représenter plusieurs lignes) afin qu'elle renvoie uu_n et v_n .

- 4. Un joueur A lance 10 pieces équilibrées et un joueur B lance 15 pieces pour lesquelles la probabilité d'obtenir pile est p=1/3. Ecrire une fonction « manche » qui renvoie 1 (victoire) lorsque A obtient strictement plus de piles que B et qui renvoie 0 sinon (défaite).
- 5. Ecrire un script qui simule 100 manches et qui affiche le nombre moyen de victoires obtenu par le joueur A