1 Avant propos

Site de la classe http://www.spartan-entertainment.com/ecs/

Mon email : olivier.binda@wanadoo.fr

Bases théoriques 2 Logique

Séquence 2

2.1 Assertions et propositions logiques

Définition 2.1 Une assertion est une affirmation élémentaire.

Définition 2.2 Une assertion indécidable est une assertion sans valeur logique.

Définition 2.3 Une proposition logique est une asertion avec une valeur logique.

2.2 Opérateurs

Dans cette section, les lettres \mathcal{P} , \mathcal{Q} , \mathcal{R} désigent des propositions logiques.

2.2.1 Affirmation

Définition 2.4 $(\mathcal{P}) := \langle \mathcal{P} \text{ est vrai } \rangle$

Propriété	2.5	(table de vérité

\mathcal{P}	Vrai	Faux
(\mathcal{P})	Vrai	Faux

2.2.2 Négation

Définition 2.6 $\overline{\mathcal{P}} := \langle \langle \mathcal{P} \text{ est faux } \rangle$

Propriété 2.7 (table de vérité)

\mathcal{P}	Vrai	Faux
$\overline{\mathcal{P}}$	Faux	Vrai

Propriété 2.8 (double négation) $\overline{\overline{P}} = P$

Propriété 2.9 (négation avec \forall) $\forall x \in X, \mathcal{P}_x = \langle \exists x \in X, \overline{\mathcal{P}_x} \rangle$

Propriété 2.10 (négation avec \exists) $\exists x \in X, \mathcal{P}_x = \langle \forall x \in X, \overline{\mathcal{P}_x} \rangle$

2.2.3 conjunction

Définition 2.11 (\mathcal{P} et \mathcal{Q}) := « \mathcal{P} et \mathcal{Q} sont vraies »

1

Propriété	2.12	(table de vérité)

Pet Q	Q Vrai	Q Faux
$\mathcal P$ Vrai	Vrai	Faux
\mathcal{P} Faux	Faux	Faux

2.2.4 Disjonction inclusive

 $\textbf{D\'efinition 2.13} \quad (\mathcal{P} \text{ ou } \mathcal{Q}) := \text{ ``el'une au moins des propositions } \mathcal{P} \text{ ou } \mathcal{Q} \text{ est vraie "})$

Propriété	2.14	(table de vérité

	pou Q	Q Vrai	Q Faux
)	$\mathcal P$ Vrai	Vrai	Vrai
	$\mathcal P$ Faux	Vrai	Faux

Propriété 2.15 (loi de Morgan) $\overline{\mathcal{P}}$ et $\overline{\mathcal{Q}} = \overline{\mathcal{P}}$ ou $\overline{\mathcal{Q}}$

Propriété 2.16 (loi de Morgan) $\overline{\mathcal{P}}$ ou $\overline{\mathcal{Q}} = \overline{\mathcal{P}}$ et $\overline{\mathcal{Q}}$

2.2.5 Disjonction exclusive

Définition 2.17 (P xor Q) := « l'une exactement des propositions \mathcal{P} ou \mathcal{Q} est vraie ».

Propriété	2.18	(table de vérité)

P xor Q	Q Vrai	Q Faux
$\mathcal P$ Vrai	Faux	Vrai
\mathcal{P} Faux	Vrai	Faux

2.2.6 Equivalence

Propriété 2.20 (table de vérité)

P ⇔ Q	Q Vrai	Q Faux
$\mathcal P$ Vrai	Vrai	Faux
\mathcal{P} Faux	Faux	Vrai

2.2.7 Implication

 $\textbf{D\'efinition 2.21} \quad (\mathcal{P} \Longrightarrow \mathcal{Q}) := \textit{``P'} \text{ faux ou } \mathcal{Q} \text{ vrai ``} = \textit{``P'} \text{ ou } \mathcal{Q} \text{ ``}$

Propriété 2.22 (table de vérité)

$P \Rightarrow Q$	Q Vrai	Q Faux
$\mathcal P$ Vrai	Vrai	Faux
$\mathcal P$ Faux	Vrai	Vrai

<u>Méthode</u> 2.23 (Pour établir une implication $\mathcal{P} \Longrightarrow \mathcal{Q}$)

- 1. Supposer que la proposition \mathcal{P} est vraie
- 2. Montrer que la proposition Q est vraie

 $\underline{\textbf{D\'efinition}} \ \ \textbf{2.24} \ \ (\textbf{r\'eciproque}) \ \ \text{La r\'eciproque} \ \ \text{de } \text{$\mathscr{P} \Longrightarrow \mathscr{Q}$ \ast est l'implication \ast $\mathscr{Q} \Longrightarrow \mathscr{P}$ \ast}$

<u>Définition</u> 2.25 (contraposée) La contraposée de « $\mathcal{P} \Longrightarrow \mathcal{Q}$ » est l'implication « $\overline{\mathcal{Q}} \Longrightarrow \overline{\mathcal{P}}$ »

Propriété 2.26 $(\mathcal{P} \Longrightarrow \mathcal{Q}) = (\overline{\mathcal{Q}} \Longrightarrow \overline{\mathcal{P}})$

2.3 Raisonnements classiques

Dans cette section, toutes les lettres majuscules rondes désignent des propositions logiques.

2.3.1 Raisonnement par double implication

Propriété 2.27 (double implication) $(\mathcal{P} \iff \mathcal{Q}) = ((\mathcal{P} \implies \mathcal{Q}) \text{ et } (\mathcal{Q} \implies \mathcal{P}))$

2.3.2 Raisonnement par contraposition

Propriété 2.28 $(\mathcal{P} \Longrightarrow \mathcal{Q}) = (\overline{\mathcal{Q}} \Longrightarrow \overline{\mathcal{P}})$

2.3.3 Raisonnement direct

Propriété 2.29 $\left(\text{Vrai} \stackrel{\text{Vrai}}{\Longrightarrow} \mathcal{Q} \stackrel{\text{Vrai}}{\Longrightarrow} \cdots \stackrel{\text{Vrai}}{\Longrightarrow} \mathcal{Z} \right) = \mathcal{Z}$

2.3.4 Raisonnement par équivalences

Propriété 2.30 $(\mathcal{P} \overset{\text{Vrai}}{\Longleftrightarrow} \mathcal{Q} \overset{\text{Vrai}}{\Longleftrightarrow} \cdots \overset{\text{Vrai}}{\Longleftrightarrow} Vrai) = \mathcal{P}$

2.3.5 Raisonnement par l'absurde

2.3.6 Raisonnement par récurence

 $\textbf{Propriété 2.32 (récurrence faible)} \quad (\forall k \geqslant 0, \mathcal{P}_k) = \begin{cases} \mathcal{P}_0 \\ \mathcal{P}_n \Longrightarrow \mathcal{P}_{n+1} \end{cases}$

Propriété 2.33 (récurrence forte) $(\forall k \geqslant 0, \mathcal{P}_k) = \begin{cases} \mathcal{P}_0 \\ \mathcal{P}_0, \dots, \mathcal{P}_n \Longrightarrow \mathcal{P}_{n+1} \end{cases}$

 $\textbf{Propriété 2.34 (récurrence à deux pas)} \quad (\forall k \geqslant 0, \mathcal{P}_k) = \begin{cases} \mathcal{P}_0, \mathcal{P}_1 \\ \mathcal{P}_{n-1}, \mathcal{P}_n \Longrightarrow \mathcal{P}_{n+1} \end{cases}$

 $\textbf{Propriété 2.35 (récurrence finie)} \quad (\forall k \in \llbracket 0,N \rrbracket, \mathcal{P}_k) = \left\{ \begin{matrix} \mathcal{P}_0 \\ \mathcal{P}_n \Longrightarrow \mathcal{P}_{n+1} \end{matrix} \quad (0 \leqslant n < N) \right.$

3 Sommes, produits, récurrences

Séquence 3

3.1 Sommes

3.1.1 Généralités

Dans cette section a_k et b_k désignent des nombres complexes pour des indices k entiers. Les lettres p, q, r, m et n désignent des entiers.

<u>Définition</u> 3.1 $\sum_{k=m}^{n} a_k = \begin{vmatrix} a_m + \dots + a_n & (m \leq n) \\ 0 & (m > n) \end{vmatrix}$

 $\underline{ \textbf{Propriét\'e}} \ \ \textbf{3.2 (relation de Chasles)} \quad \sum_{k=p}^{r} a_k = \sum_{k=p}^{q} a_k + \sum_{k=q+1}^{r} a_k \qquad (p \leqslant q \leqslant r)$

Propriété 3.4 (changement d'indice) $\sum_{k=m}^n a_k = \sum_{\ell=m-d}^{n-d} a_{\ell+d} \qquad (d \in \mathbb{Z})$

Méthode 3.5 (changement d'indice)

Illustration via le changement d'indice $k = \ell + d \iff \ell = k - d$

1. écrire une somme portant sur le nouvel indice

$$\sum_{k=m}^{n} a_k = \sum_{\ell=1}^{n} a_{\ell} = \sum_{\ell=1$$

2. recopier ce que l'on somme en remplaçant l'ancien indice par son expression utilisant le nouvel indice

$$\sum_{k=m}^{n} a_k = \sum_{\ell=1}^{n} a_{\ell+d}$$

3. déterminer les bornes de la nouvelle somme en trouvant les valeurs du nouvel indice correspondant à l'ancien indice

$$k = n \\ k = m$$

$$k = m$$

$$k = d = \ell$$

$$k = \ell + d$$

$$\begin{cases} \ell = n - d \\ \ell = m - d \end{cases}$$

4. reporter les bornes correctement dans la somme (échanger les bornes de place si la monotonie de la suite des indices a changé)

$$\sum_{k=m}^{n} a_k = \sum_{\ell=m-d}^{n-d} a_{\ell+d}$$

Propriété 3.7
$$\sum_{k=0}^{n} (a_{k+1} - a_k) = a_{n+1} - a_0$$

<u>Méthode</u> 3.8 (somme téléscopique) Illustration avec $\sum_{k=0}^{n} (a_{k+1} - a_k)$

1. séparer les sommes

$$\sum_{k=0}^n (a_{k+1}-a_k) = \sum_{k=0}^n a_{k+1} - \sum_{k=0}^n a_k$$
 2. Faire un changement d'indice pour rendre identique ce que l'on somme

$$\sum_{k=0}^{n} \underbrace{a_{k+1}}_{\ell=k+1} - \sum_{k=0}^{n} a_k = \sum_{\ell=1}^{n+1} a_{\ell} - \sum_{k=0}^{n} a_k$$

3. Garder dans les sommes les termes en commun, sortir ceux qui ne le sont pas

$$\sum_{k=0}^{n} (a_{k+1} - a_k) = \sum_{\ell=1}^{n} a_{\ell} + \frac{a_{n+1}}{a_{n+1}} - \left(\frac{a_0}{a_0} + \sum_{k=1}^{n} a_k\right)$$

4. Simplifier les sommes, qui doivent disparaître

3.1.2 Identité fondamentale

Dans cette section, x et y désignent des nombres complexes

Propriété 3.9 (identité fondamentale)
$$x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^k y^{n-1-k}$$
 $(n \ge 0)$

<u>Corollaire</u> 3.10 (identité remarquable) $x^2 - y^2 = (x - y)(x + y)$

3.1.3 Sommes de Bernouilli

Propriété 3.11 (somme des carrés)
$$\sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6} \qquad (n \geqslant 0)$$

Propriété 3.12 (somme des cubes)
$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4} = \left(\sum_{k=0}^{n} k\right)^2 \qquad (n \geqslant 0)$$

3.1.4 Sommes multiples

Théorème 3.13 (théorème de Fubini
$$\Box$$
) $\sum_{k=b}^c \sum_{\ell=d}^e a_{k,\ell} = \sum_{\ell=d}^e \sum_{k=b}^c a_{k,\ell}$

Théorème 3.14 (théorème de Fubini
$$\triangle$$
) $\sum_{k=0}^n \sum_{\ell=0}^k a_{k,\ell} = \sum_{\ell=0}^n \sum_{k=\ell}^n a_{k,\ell}$

3

Méthode 3.15 (Pour intervertir deux sommes) illustration via le théorème de Fubini \triangle

1. Ecrire deux sommes en recopiant ce que l'on somme et en intervertissant les indices de sommation

$$\sum_{k=0}^{n} \sum_{\ell=0}^{k} a_{k,\ell} = \sum_{\ell=k=0}^{n} \sum_{k=0}^{n} a_{k,\ell}$$

2. Déterminer et reporter les valeurs constantes extrèmes que peut prendre l'indice de gauche (ici, $0\leqslant k\leqslant n$ et $0\leqslant \ell\leqslant k$ induisent que $0\leqslant \ell\leqslant k\leqslant n$

$$\sum_{k=0}^{n} \sum_{\ell=0}^{k} a_{k,\ell} = \sum_{\ell=0}^{n} \sum_{k=0}^{n} a_{k,\ell}$$

3. Déterminer et reporter les valeurs extrèmes que peut prendre l'indice de droite $(ici, 0 \leq \ell \leq k \leq n)$, qui peuvent dépendre de l'indice de gauche

$$\sum_{k=0}^{n} \sum_{\ell=0}^{k} a_{k,\ell} = \sum_{\ell=0}^{n} \sum_{k=\ell}^{n} a_{k,\ell}$$

3.2 Produits et factorielles

3.2.1 Généralités

Dans cette section a_k et b_k désignent des nombres complexes pour des indices k entiers. Les lettres p, q, r, m et n désignent des entiers.

Notation 3.16 (produit)
$$\prod_{k=m}^{n} a_k = \begin{vmatrix} a_m \times \cdots \times a_n & (m \leq n) \\ 1 & (m > n) \end{vmatrix}$$

Notation 3.17 (factorielle) $n! = 1 \times 2 \times 3 \times \cdots \times n$ $(n \ge 1)$

Convention 3.18 0! = 1

Propriété 3.19
$$n! = \prod_{k=1}^{n} k$$
 $(n \ge 0)$

Propriété 3.20 (relation de Chasles)
$$\prod_{k=p}^r a_k = \prod_{k=p}^q a_k \times \prod_{k=q+1}^r a_k \qquad (p \leqslant q \leqslant r)$$

Propriété 3.21
$$\prod_{k=m}^{n}(a_k \times b_k) = \prod_{k=m}^{n}a_k \times \prod_{k=m}^{n}b_k$$

$$\textbf{Propriét\'e 3.22 (puissances)} \quad \prod_{k=m}^n (a_k)^\ell = \left(\prod_{k=m}^n a_k\right)^\ell \qquad (\ell \in \mathbb{Z} \text{ et } a_k \neq 0 \text{ si } \ell < 0)$$

Propriété 3.23 (changement d'indice)
$$\prod_{k=m}^n a_k = \prod_{\ell=m-d}^{n-d} a_{\ell+d}$$
 $(d \in \mathbb{Z})$

Propriété 3.24
$$\prod_{k-m}^{n} a_k = \prod_{\ell-m}^{n} a_{n+m-\ell}$$

Propriété 3.25 (produit téléscopique)
$$\prod_{k=0}^n \frac{a_{k+1}}{a_k} = \frac{a_{n+1}}{a_0} \qquad (a_k \neq 0 \text{ pour } 0 \leqslant k \leqslant n)$$

4 Ensembles et applications

Séquence 5

4.1 Ensembles

Définition 4.1 (ensemble) Un ensemble est une collection d'objets

Définition 4.2 Un élément d'un ensemble E est un objet appartenant à E

Définition 4.3 (ensemble vide) $\emptyset = \{\}$

Dans la suite de cette section, I, A, B et C désignent des ensembles, de même que A_i pour $i \in I$.

<u>Définition</u> 4.4 (inclusion) $A \subset B \iff (\forall a \in A, a \in B)$

Propriété 4.5 (double inclusion) $(A \subset B \text{ et } B \subset A) \iff (A = B)$

Définition 4.6 (Sous-ensemble) B partie de $A \iff B \subset A$

<u>Définition</u> 4.7 (ensemble des parties) $\mathcal{P}(A) := \{B : B \subset A\}$

<u>Définition</u> 4.8 (intersection) $A \cap B := \{x : x \in A \text{ et } x \in B\}$

<u>Définition</u> 4.10 (réunion) $A \cup B := \{x : x \in A \text{ ou } x \in B\}$

<u>Définition</u> 4.13 (complémentaire) $C_B(A) := \{x \in B : x \notin A\} =: B \setminus A$

Propriété 4.14 (involution) $\overline{\overline{A}} = A$

Propriété 4.15 (lois de Morgan) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$

<u>Définition</u> 4.16 (disjonction) A et B disjoints $\iff A \cap B = \emptyset$

 $\underline{ \textbf{D\'efinition}} \ \ \textbf{4.17} \quad (\Omega_i)_{i \in I} \middle| \ \ \begin{array}{c} \text{partition} \\ \text{syst\`eme complet} \end{array} \ \ \text{de} \ A \Longleftrightarrow \begin{cases} \Omega_i \subset A \quad (i \in I) \\ \Omega_i \cap \Omega_j = \varnothing \quad (i \neq j) \\ \bigcup_{i \in I} \Omega_i = A \end{cases}$

<u>Définition</u> 4.18 (produit cartésien) $A \times B := \{(a,b) : a \in A \text{ et } b \in B\}$

Définition 4.19 $A^n = \underbrace{A \times \cdots \times A}_{n \text{ fois}}$ $(n \geqslant 1)$

4.2 Fonctions et applications

Dans cette section, A et B désignent des ensembles et $f \subset A \times B$.

4.2.1 Fonctions

Définition 4.20 (fonction) Une fonction $f: A \to B$ est une partie $f \subset A \times B$ vérifiant

pour chaque $x \in A$, il existe **au plus** un $y \in B$ tel que $(x,y) \in f$

Dans la suite de cette section, $f: A \to B$ désigne une fonction.

<u>Définition</u> 4.21 (image et antécédent) $\begin{array}{c} x \text{ antécédent par } f \text{ de } y \\ y \text{ image par } f \text{ de } x \end{array}$ $\begin{array}{c} y = f(x) \iff (x,y) \in f \end{array}$

<u>Définition</u> 4.22 (ensemble de définition) $\mathcal{D}f := \{x \in A : \exists y \in B, y = f(x)\}$

Définition 4.23 (restriction au départ) $f|_C: C \to B \qquad (C \subset A)$ $x \mapsto f(x)$

Définition 4.24 (restriction à l'arrivée) $f|^D: A \to D \qquad (D \subset B)$ $x \mapsto f(x)$

Définition 4.25 (au départ et à l'arrivée) $f|_C^D: C \rightarrow D \qquad (C \subset A, D \subset B)$ $x \mapsto f(x)$

4.2.2 Applications

<u>Définition</u> 4.26 (application) Une application de A dans B est une fonction $f: A \to B$ vérifiant

 $\forall x \in A, \exists ! y \in B : y = f(x)$

<u>Définition</u> 4.27 (espace des applications) $\mathcal{F}(A,B) = \{f : A \to B \text{ application}\} = B^A$

<u>Définition</u> 4.28 (ensemble image) $f(C) := \{f(x) : x \in C\}$ $(C \subset A)$

Définition 4.29 (image réciproque) $f^{-1}(D) := \{x \in A : f(x) \in D\}$ $(D \subset B)$

Propriété 4.30 Soient $f:A\to B$ une function et deux ensembles $C\subset A$ et $D\subset B$. Alors, $f|_C^D$ application $\Longleftrightarrow \begin{cases} C\subset \mathcal{D}f\\ f(C)\subset D \end{cases}$

Corollaire 4.31 La restriction d'une fonction f au départ à $\mathcal{D}f$ est une application

<u>Définition</u> 4.32 (composée) La composée de l'application $f: A \to B$ par l'application $g: B \to C$ est l'application définie par

$$g \circ f: A \rightarrow C$$

 $x \mapsto g(f(x))$

Propriété 4.33 (associativité) Soient $f: A \to B, g: B \to C$ et $h: C \to D$, des applications. Alors, $h \circ (g \circ f) = (h \circ g) \circ f$

4.2.3 Injections, surjections et bijections

Dans toute cette section $f:A\to B$ est une application et A et B sont des ensembles non-vides

Définition 4.34 (injection)
$$f$$
 injective \iff $(\forall x \in A, \forall x' \in A, f(x) = f(x') \Longrightarrow (x = x'))$

Définition 4.35 (surjection) f surjective $\iff f(A) = B$

Propriété 4.36 (surjection) f surjective \iff $(\forall y \in B, \exists x \in A : y = f(x))$

Propriété 4.38 (bijection) f bijective \iff $(\forall y \in B, \exists! x \in A : y = f(x))$

<u>Méthode</u> 4.39 (étudier si une application $f: A \to B$ est injective, surjective ou bijective)

- 1. Fixer un élément $y \in B$ quelconque.
- 2. Résoudre l'équation y = f(x).
- 3. Si pour chaque élément $y \in B$, il y a :
 - a. au plus une solution $x \in A$, f est injective
 - b. au moins une solution $x \in A$, f est surjective
 - c. exactement une solution $x \in A$, f est bijective. De plus, on trouve une formule pour la bijection réciproque : $f^{-1}(y) = x$.

Propriété 4.40 Soient $f: A \to B$ et $g: B \to C$, bijectives. Alors, $g \circ f$ est une bijection

Propriété 4.42 (identité) L'identité de A est une bijection $(Id_A \circ Id_A = Id_A)$

<u>Définition</u> **4.43** (bijection réciproque) La bijection réciproque $f^{-1}: B \to A$ d'une bijection $f: A \to B$ est l'application définie par

$$f^{-1}(y) = x \iff y = f(x) \qquad (x \in A, y \in B)$$

Corollaire 4.45 Soit $f: A \to B$, une bijection. Alors, f^{-1} est bijective

4.3 Combinatoire

Séquence 7

Dans cette section, les lettres majuscules désignent des ensembles. Deux ensembles sont dits « en bijection » ou equipotents ssi il existe une bijection de l'un dans l'autre.

4.3.1 Cardinal

Définition 4.46 Une partie de \mathbb{N} est finie ssi elle est majorée

Définition 4.47 $[m:n] := \{k \in \mathbb{Z} : m \le k \le n\}$ $(m \in \mathbb{R}, n \in \mathbb{R})$

Définition 4.48 Soit $n \in \mathbb{N}^*$. Alors, card(E) = n ssi [1:n] et E sont en bijection

Convention 4.49 $\operatorname{card}(\emptyset) = 0$

Définition 4.50 Un ensemble est fini ssi il est en bijection avec une partie finie de $\mathbb N$

Propriété 4.51 E fini \iff card(E) fini

Définition 4.52 Un ensemble est dénombrable ssi il est en bijection avec une partie de \mathbb{N}

Propriété 4.53 Un ensemble est dénombrable ssi il existe une injection de cet ensemble dans \mathbb{N} .

Propriété 4.54 Un ensemble est dénombrable ssi il existe une surjection de \mathbb{N} dans cet ensemble.

Théorème 4.55 \mathbb{N} , \mathbb{Z} , \mathbb{D} et \mathbb{Q} sont dénombrables mais \mathbb{R} et \mathbb{C} ne le sont pas.

Propriété 4.56 Soit E un ensemble fini. Alors, F en bijection avec $E \iff \operatorname{Card}(F) = \operatorname{Card}(E)$

Propriété 4.58 Soit $F \subset E$ fini. Alors, $F = E \iff \operatorname{card}(F) = \operatorname{card}(E)$

Propriété 4.59 (caractérisation) Soit f application entre ensembles de même cardinal fini. Alors, f injective $\iff f$ surjective $\iff f$ bijective

4.3.2 Opérations

Dans cette section E et F désignent des ensembles finis de cardinaux respectifs n et p

Propriété 4.60 (réunion)
$$Card(E \cup F) = Card(E) + Card(F) - Card(E \cap F)$$

Propriété 4.61 (produit cartésien)
$$Card(E \times F) = Card(E) \times Card(F) = np$$

Propriété 4.62 (ensemble des parties)
$$\operatorname{Card}(\mathcal{P}(E)) = 2^{\operatorname{Card}(E)} = 2^n$$

Propriété 4.63 (nombre d'applications) $\operatorname{Card}(F^E) = \operatorname{Card}(F)^{\operatorname{Card}(E)} = p^n$ C'est le nombre de p-listes d'un ensemble à n éléments

Propriété 4.64 (permutations) Card ({bijection $E \to E$ }) = Card(E)! = n! C'est le nombre de permutations d'un ensemble à n éléments.

<u>Propriété</u> 4.65 (arrangements) Card ({injection $F \to E$ }) = $A_n^p := \frac{n!}{(n-p)!}$ $(n \ge p)$ C'est le nombre de p-listes sans répétition d'un ensemble à n éléments

Propriété 4.66 (combinaisons) Card $(F \subset E : Card(F) = p) = \binom{n}{p}$ $(0 \le p \le n)$ C'est le nombre de combinaisons (de listes non-ordonnées) de p éléments choisis parmi n

Ensembles fondamentaux

5 Ensemble \mathbb{R} des nombres réels

Séquence 4

5.1 Ordre réel

Dans cette section, x, s, S désignent des nombres réels et A désigne une partie de \mathbb{R}

Notation 5.1 non standard
$$\begin{cases} A \leqslant x & \iff a \leqslant x & (a \in A) \\ x \leqslant A & \iff x \leqslant a & (a \in A) \end{cases}$$

Définition 5.2 (minorant) x minorant de $A \iff x \leqslant A$

Définition 5.3 (majorant) x majorant de $A \iff A \leqslant x$

Définition 5.4 (plus petit élément) x plus petit élément de $A \iff x \in A$ et $x \leqslant A$

Définition 5.5 (plus grand élément) x plus grand élément de $A \iff x \in A$ et $A \leqslant x$

Définition 5.6 (borne supérieure) $S = \sup A \iff A \leqslant S \text{ et } \exists a \in A^{\mathbb{N}}, \lim a = S$

Définition 5.7 (borne inférieure) $s = \inf A \iff s \leqslant A \text{ et } \exists a \in A^{\mathbb{N}}, \lim a = s$

Propriété 5.8 Toute partie majorée non vide de $\mathbb R$ admet une borne supérieure

Propriété 5.9 Toute partie minorée non vide de \mathbb{R} admet une borne inférieure

6 Ensemble \mathbb{C} des nombres complexes Séquence 19

6.1 Forme algébrique

6.1.1 Généralités

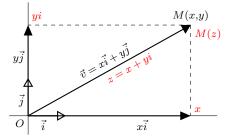
Dans cette section, x, x', y et y' désignent des nombres réels

Définition 6.1 (Nombre complexe) Un nombre complexe est un nombre du type z = x + iy avec x,y réels et $i^2 = -1$.

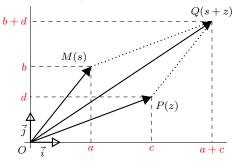
Définition 6.2 (addition) (x + iy) + (x' + iy') = (x + x') + i(y + y')

Définition 6.3 (multiplication) $(x+iy) \times (x'+iy') = (xx'-yy') + i(xy'+yx')$

Propriété 6.4 (interpretation géométrique des nombres complexes)



Propriété 6.5 (interpretation géométrique de l'addition) Géométriquement, l'addition de deux nombres complexes s=a+ib et z=c+id s'interprètre par la règle du parallèlogramme : en effet, les points O, M, P et Q, d'affixes respectives 0, s, z et s+z, forment un parallèlogramme.



6.1.2 Parties réelles et imaginaires

Définition 6.6 Pour x et y réels, les parties réelles et imaginaires du complexe z = x + iy sont les nombres réels $\Re e(z) := x$ et $\Im m(z) := y$

Propriété 6.9 (nombre réel) Un nombre réel est un nombre complexe de partie imaginaire nulle $z \in \mathbb{R} \iff \Re e(z) = z \iff \Im m(z) = 0 \iff \overline{z} = z$

 $\frac{\text{Propriét\'e}}{\text{r\'eelle nulle}}$ 6.10 (imaginaire pur) Un nombre imaginaire pur est un nombre complexe de partie

$$z \in i\mathbb{R} \iff \Re e(z) = 0 \iff i\Im m(z) = z \iff \overline{z} = -z$$

6.1.3 Conjuguaison

Dans cette section, s et z désignent des nombres complexes

Définition 6.11 Pour x et y réels, le conjugué de z = x + iy est le nombre complexe $\overline{z} = x - iy$

Propriété 6.12 (lien avec les parties réelles et imaginaires)

$$\begin{cases} z = \Re e(z) + i \Im m(z) \\ \overline{z} = \Re e(z) - i \Im m(z) \end{cases} \qquad \begin{cases} \Re e(z) = \frac{z + \overline{z}}{2} \\ \Im m(z) = \frac{z - \overline{z}}{2i} \end{cases}$$

Propriété 6.13 (linéarité) $\overline{\lambda s + \mu z} = \lambda \overline{s} + \mu \overline{z}$ $(\lambda \in \mathbb{R}, \mu \in \mathbb{R})$

Propriété 6.14 (produit) $\overline{s \times z} = \overline{s} \times \overline{z}$

Propriété 6.15 (quotient)
$$\frac{\overline{s}}{z} = \frac{\overline{s}}{\overline{z}}$$
 $(z \neq 0)$

Propriété 6.16 (puissance) $\overline{s}^n = \overline{s}^n$ $(n \in \mathbb{Z}, s \neq 0 \text{ si } n < 0)$

 $\underline{\underline{\mathbf{Propri\acute{e}t\acute{e}}}} \ \ \mathbf{6.17} \ \ \mathbf{(involution)} \quad \overline{\overline{z}} = z$

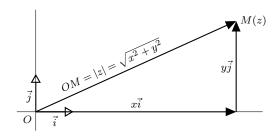
6.2 Forme trigonométrique

6.2.1 Module

Dans cette section, s et z désignent des nombres complexes

<u>Définition</u> **6.18 (module)** Le module d'un nombre complexe z = x + iy est le nombre réel positif ou nul $|z| = \sqrt{x^2 + y^2}$

Propriété 6.19 (interpretation géométrique)



Propriété 6.20 (positivité) $|z| \in \mathbb{R}+$

Propriété 6.21 (« définie »)
$$|z| = 0 \iff z = 0$$

Propriété 6.22 (inégalités triangulaires) $||s| - |z|| \le |s + z| \le |s| + |z|$

Propriété 6.23 (module du conjugué) $|z| = |\overline{z}|$

Propriété 6.24 (module du produit) $|s \times z| = |s| \times |z|$ $(s \neq 0)$

Propriété 6.25 (module du quotient) $\left|\frac{s}{z}\right| = \frac{|s|}{|z|}$ $(s \neq 0)$

Propriété 6.26 (module des puissances) $|z^n| = |z|^n$ $(n \in \mathbb{Z}, z \neq 0 \text{ si } n < 0)$

Propriété 6.27 (module et conjugué) $|z|^2 = z\overline{z}$

Propriété 6.28 (majoration) $\frac{|\Re e(z)|}{|\Im m(z)| \leq |z|}$

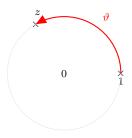
Propriété 6.29 (module et valeur absolue) |x| = |x| $(x \in \mathbb{R})$

<u>Méthode</u> 6.30 (pour mettre le quotient 1/z sous forme algébrique) Multiplier numérateur et dénominateur par le conjugué de z.

$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}.$$

6.2.2 Argument

Définition 6.31 (argument) L'argument d'un nombre complexe z de module 1 est la longueur θ en radian de l'arc du cercle trigonométrique allant de 1 à z dans le sens direct. Cette longueur, qui est unique modulo 2π , est notée $\arg(z) \equiv \theta \quad [2\pi]$.



L'argument d'un nombre complexe $z \neq 0$ est l'argument de z/|z|.

Propriété 6.33
$$arg(z \times s) = arg(z) + arg(s)$$
 [2 π]

Propriété 6.34
$$\arg\left(\frac{z}{s}\right) = \arg(z) - \arg(s)$$
 $[2\pi]$

Propriété 6.35
$$\arg(\overline{z}) \equiv -\arg(z)$$
 $[2\pi]$

Propriété 6.36
$$\arg\left(\frac{1}{z}\right) \equiv -\arg(z)$$
 $[2\pi]$

6.2.3 Exponentielle complexe

Définition 6.37 (exponentielle d'un nombre réel) L'exponentielle réelle $x \mapsto e^x$ est la bijection réciproque du logarithme népérien $x \mapsto \ln(x)$. En d'autres termes $y = e^x \iff x = \ln(y) \qquad (y > 0, x \in \mathbb{R})$

Propriété 6.38 L'exponentielle réelle est indéfiniment dérivable sur \mathbb{R} et $(e^x)' = e^x$ $(x \in \mathbb{R})$

Définition 6.39 (exponentielle d'un imaginaire pur) L'exponentielle d'un nombre imaginaire pur $i\theta$ est l'unique nombre complexe z de module 1 et d'argument θ

Définition 6.40 (exponentielle complexe) $e^{x+iy} = e^x \times e^{iy}$ $(x \in \mathbb{R}, y \in \mathbb{R})$

Corollaire 6.41 $|e^z| = e^{\Re e(z)}$ et $\arg(e^z) \equiv \Im m(z)$ $[2\pi]$

Corollaire 6.42 (égalité) $e^z = e^s \iff \exists k \in \mathbb{Z}, z = se^{2\pi i k}$

Propriété 6.43 (exponentiels et tours complets) $e^z = 1 \iff (\exists k \in \mathbb{Z}, z = 2\pi ki)$

<u>Théorème</u> 6.44 (relation fondamentale) $e^{z+s} = e^z \times e^s$ $(z \in \mathbb{C}, s \in \mathbb{C})$

<u>Corollaire</u> 6.45 (inverse) $\frac{1}{e^z} = e^{-z}$ $(z \in \mathbb{C})$

<u>Corollaire</u> 6.46 (quotient) $e^{z-s} = \frac{e^z}{e^s}$ $(z \in \mathbb{C}, s \in \mathbb{C})$

Corollaire 6.47 (puissance) $e^{nz} = (e^z)^n$ $(z \in \mathbb{C}, n \in \mathbb{Z})$

 $\textbf{Propriété 6.48 (racines } n^{\textbf{ième}} \textbf{ de l'unit\'e)} \quad z^n = 1 \Longleftrightarrow (\exists k \in [\![1,n]\!], z = \mathrm{e}^{\frac{2\pi i k}{n}}) \qquad (n \in \mathbb{N}^*)$

Propriété 6.49 $e^z \neq 0$ $(z \in \mathbb{C})$

6.2.4 Forme trigonométrique

Définition 6.50 $z = |z|e^{i \arg(z)}$ $(z \in \mathbb{C}^*)$

$$\begin{split} \mathbf{Propri\acute{e}t\acute{e}} \ \ \mathbf{6.51} \quad \forall z \in \in \mathbb{C}, \exists ! r \geqslant 0, \exists \ \underbrace{\vartheta \in] - \pi, \pi]}_{\text{unique si } \vartheta \neq 0} \ , z = r \mathrm{e}^{i\vartheta} \end{split}$$

6.3 Trigonométrie

6.3.1 cosinus et sinus

Propriété 6.53 (formule d'Euler) $e^{i\vartheta} = \cos(\vartheta) + i\sin(\vartheta)$ $(\vartheta \in \mathbb{R})$

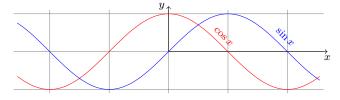
Propriété 6.54 Les fonctions cosinus et sinus sont 2π -périodiques et π -antipériodiques sur \mathbb{R} $\cos(x+2\pi)=\cos(x)$ et $\cos(x+\pi)=-\cos(x)$ $(x\in\mathbb{R})$ $\sin(x+2\pi)=\sin(x)$ et $\sin(x+\pi)=-\sin(x)$ $(x\in\mathbb{R})$

$$cos(-x) = cos(x)
sin(-x) = -sin(x)$$
(x \in \mathbb{R})

Propriété 6.56 Les fonctions cosinus et sinus sont indéfiniment dérivables sur $\mathbb R$

$$\cos'(x) = \cos\left(x + \frac{\pi}{2}\right) = -\sin(x)$$

$$\sin'(x) = \sin\left(x + \frac{\pi}{2}\right) = \cos(x)$$
 $(x \in \mathbb{R})$



Propriété 6.57 $\cos^2(x) + \sin^2(x) = 1$ $(x \in \mathbb{R})$

Propriété 6.58 (addition de l'angle) $\cos(a+b) = \cos a \cos b - \sin a \sin b$ $\sin(a+b) = \sin a \cos b + \cos a \sin b$ $(a \in \mathbb{R}, b \in \mathbb{R})$

Corollaire 6.59 (duplication de l'angle)

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 1 - 2\sin^2(x) = 2\cos^2(x) - 1
\sin(2x) = 2\sin x \cos x$$
($x \in \mathbb{R}$)

Propriété 6.60 (formule de Moivre) $\cos(n\theta) + i\sin(n\theta) = (\cos\theta + i\sin\theta)^n$ $(\vartheta \in \mathbb{R}, n \in \mathbb{Z})$

Propriété 6.61 (égalité de cosinus)
$$\cos x = \cos y \iff \underbrace{x \equiv y \quad [2\pi] \text{ ou } x \equiv -y \quad [2\pi]}_{x \equiv \pm y \quad [2\pi]}$$

Propriété 6.62 (égalité de sinus) $\sin x = \sin y \iff x \equiv y$ [2 π] ou $x \equiv \pi - y$ [2 π]

6.3.2 tangente

Dans cette section, x, a et b désignent des nombres réels

<u>Définition</u> 6.63 La fonction tangente est la fonction définie par $\tan x = \frac{\sin x}{\cos x}$

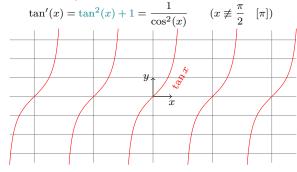
<u>Propriété</u> 6.64 (ensemble de définition) $\tan = \{x \in \mathbb{R} : x \not\equiv \frac{\pi}{2} \quad [\pi]\}$

Propriété 6.65 La fonction tangente est π -périodique sur son ensemble de définition $\tan(x+\pi) = \tan(x) \qquad (x \not\equiv \frac{\pi}{2} \quad [\pi])$

Propriété 6.66 La fonction tangente est impaire sur son ensemble de définition

$$\tan(-x) = -\tan(x)$$
 $(x \not\equiv \frac{\pi}{2}$ $[\pi]$)

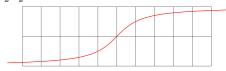
Propriété 6.67 La fonction tangente est indéfiniment dérivable sur son ensemble de définition et



Propriété 6.68 (addition de l'angle) $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$ (a,b) et $a+b \not\equiv \frac{\pi}{2}$ $[\pi]$)

6.3.3 arctangente

<u>Définition</u> 6.69 La fonction arctangente Arctan : $\mathbb{R} \to]-\frac{\pi}{2}, \frac{\pi}{2}[$ est la bijection réciproque de la restriction à l'intervalle $]-\frac{\pi}{2}, \frac{\pi}{2}[$ de la fonction tangente



$$Arctan'(x) = \frac{1}{x^2 + 1} \quad (x \in \mathbb{R})$$

Analyse

7 Suites

Séquence 4

7.1 Généralités

Dans cette section, I désigne une partie non vide de \mathbb{N} .

Définition 7.1 (suite) Une suite d'éléments de \mathbb{R} indicée par I est une application $u:I\to\mathbb{R}$

Définition 7.2 (espace des suites) $\mathbb{R}^I = \mathcal{F}(I,\mathbb{R})$

Dans la suite de cette section, u et v désignent des suites de \mathbb{R}^{I} .

Définition 7.3 (addition) $(u+v)_n := u_n + v_n$ $(n \in I)$

Définition 7.4 (multiple) $(\lambda \cdot u)_n := \lambda u_n$ $(\lambda \in \mathbb{R}, n \in I)$

Définition 7.5 (produit) $(u \times v)_n := u_n v_n$ $(n \in I)$

Propriété 7.6 On calcule dans $(\mathbb{R}^I, +, \cdot, \times)$ comme dans $(\mathbb{R}, +, \cdot, \times)$

Propriété 7.7 Pour $d \in \mathbb{Z}$, la translatée $\mathcal{T}_d(u)$ de la suite u est la suite $w \in \mathbb{R}^{d+I}$ définie par

$$w_n := u_{n-d} \qquad (n \in d+I)$$

Propriété 7.8 Pour $N \in \mathbb{Z}$ et $I_N := \{n \in I : n \geqslant N\}$, la suite $(u_n)_{n \in I_N}$ appartient à \mathbb{R}^{I_N}

7.2 Suites fondamentales

Séquence 1

7.2.1 Suites arithmétiques

Dans cette section, r désigne un nombre de \mathbb{R} .

 $\underline{\textbf{Définition}} \ \ \textbf{7.9} \quad u \ \text{arithmétique de raison} \ r \iff u_{n+1} - u_n = r \qquad (n \geqslant 0)$

Propriété 7.10 (formule) u arithmétique de raison $r \iff u_n = u_0 + nr$ $(n \ge 0)$

Propriété 7.11 (somme) Soit u une suite arithmétique de raison r. Alors,

$$\sum_{m\leqslant k\leqslant n}u_k=\frac{u_m+u_n}{2}(n-m+1)=\text{moyenne aux extrémités}\times \text{nombre de termes} \qquad (0\leqslant m\leqslant n).$$

7.2.2 Suites géométriques

Dans cette section, q désigne un nombre de \mathbb{R} .

<u>Définition</u> 7.12 u géométrique de raison $q \iff u_{n+1} = qu_n$ $(n \ge 0)$

Propriété 7.13 (formule) u géométrique de raison $q \iff u_n = u_0 q^n$ $(n \geqslant 0)$

Propriété 7.14 (somme) Soit u une suite géométrique de raison $q \neq 1$. Alors,

$$\sum_{m\leqslant k\leqslant n}u_k=\frac{u_m-q\times u_n}{1-q}=\frac{\text{premier terme }-\text{ terme après le dernier}}{1-\text{ raison}}\qquad (0\leqslant m\leqslant n).$$

7.2.3 Suites arithmético-géométriques

Dans cette section, a et b désignent deux nombres de \mathbb{R} et nous considérons les équations du type

$$u_{n+1} = au_n + b \qquad (n \geqslant 0) \tag{7.1}$$

Définition 7.15 *u* arithmético-géométrique $\iff \exists (a,b) \in \mathbb{R}^2$ vérifiant (7.1)

Propriété 7.16 Soient $a \neq 1$ et $c = \frac{b}{1-a}$. Alors,

$$u$$
 vérifie (7.1) $\iff u_n = c + a^n(u_0 - c) \qquad (n \ge 0).$

Méthode 7.17 (présentation recommandée)

- 1. Chercher la suite constante c vérifiant (7.1) en résolvant l'équation x = ax + b
- 2. Soustraire et remarquer que la suite $v_n = u_n c$ est géométrique de raison a
- 3. En déduire la formule de u_n .

7.2.4 Suites vérifiant une récurrence linéaire du second ordre

Dans cette section, nous considérons pour $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ et $c \in \mathbb{R}^*$ les équations du type

$$au_{n+2} + bu_{n+1} + cu_n = 0 (n \ge 0).$$
 (7.2)

Définition 7.18 Une suite *u* satisfait une récurrence linéaire homogène du second ordre *ssi* il existe

des nombres réels $a \neq 0$, b et $c \neq 0$ vérifiant (7.2).

Définition 7.19 Le polynôme caractéristique associé à (7.2) est le trinôme

$$P = aX^2 + bX + c \tag{7.3}$$

Définition 7.20 L'équation caractéristique associée à (7.2) est l'équation $aX^2 + bX + c = 0$

Propriété 7.21 Si le polynôme caractéristique (7.3) admet une racine double s, une suite réelle u est solution de (7.2) ssi il existe des nombres réels λ et μ tels que

$$u_n = \lambda s^n + \mu \frac{n}{z^n} \qquad (n \geqslant 0)$$

Propriété 7.22 Si le polynôme caractéristique (7.3) admet deux racines distinctes s et z, une suite réelle u est solution de (7.2) ssi il existe des nombres λ et μ tels que

$$u_n = \lambda s^n + \mu z^n \qquad (n \geqslant 0)$$

7.3 Suites bornées, minorées, majorées

Dans cette section, u désigne une suite de $\mathbb{R}^{\mathbb{N}}$.

Définition 7.23 (suite bornée) u est bornée ssi il existe M tel que $|u_n| \leq M$ pour $n \geq 0$

Définition 7.24 u est bornée à partir du rang N ssi il existe M tel que $|u_n| \leq M$ pour $n \geq N$

Propriété 7.25 Une suite est bornée ssi elle est bornée à partir d'un certain rang

Propriété 7.26 Les sommes, les multiples et les produits de suites bornées sont des suites bornées.

Définition 7.27 (suite majorée) u est majorée ssi il existe $M \in \mathbb{R}$ tel que $u_n \leq M$ pour $n \geq 0$

Définition 7.28 (suite minorée) u est minorée ssi il existe $m \in \mathbb{R}$ tel que $m \leq u_n$ pour $n \geq 0$

Propriété 7.29 u est bornée ssi u est minorée et majorée

Notation 7.30 $u \leqslant v \iff u_n \leqslant v_n \text{ pour } n \geqslant 0$

7.4 Suites convergentes

Dans cette section, u et v désignent des suites de $\mathbb{R}^{\mathbb{N}}$ et ℓ désigne un nombre de \mathbb{R} .

Définition 7.31
$$\begin{array}{c|c} u \text{ tends vers } \ell \\ u \text{ converge vers } \ell \end{array} \iff \lim(u) = \ell \iff \underset{\text{non standard}}{u \to \ell}$$

Définition 7.32 (limite (ECS)) $u \to \ell$ ssi tout intervalle ouvert contenant ℓ contient u_n pour tous les indices n, sauf pour un nombre fini d'entre eux.

Définition 7.33 (limite) $u \to \ell \iff (\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geqslant N, |u_n - \ell| \leqslant \varepsilon)$

Propriété 7.34 Lorsqu'elle existe, la limite d'une suite est unique

Définition 7.35 u converge ssi il existe $\ell \in \mathbb{R}$ tel que u converge vers ℓ

Définition 7.36 *u* diverge *ssi u* ne converge pas

Propriété 7.37 u converge $\implies u$ bornée

Propriété 7.38 $u \to \ell \iff u - \ell \to 0$

Propriété 7.39
$$\begin{vmatrix} |u| \leqslant v \\ v \to 0 \end{vmatrix} \implies u \to 0$$

Théorème 7.40 Soient u et v des suites convergentes et $\lambda \in \mathbb{R}$. Les suites λu , u + v et $u \times v$ convergent et

$$\lim(\lambda.u) = \lambda.\lim(u)$$

$$\lim(u+v) = \lim(u) + \lim(v)$$

$$\lim(u \times v) = \lim(u) \times \lim(v)$$

Propriété 7.41 $u \to \ell \neq 0 \implies (\exists N \geqslant 0 : \forall n \geqslant N, u_n \neq 0)$

Théorème 7.42 Soient
$$u \to \ell$$
 et $v \to \ell' \neq 0$. Alors, $\lim \left(\frac{u}{v}\right) = \frac{\lim u}{\lim v} = \frac{\ell}{\ell'}$

Propriété 7.43
$$\begin{cases} u \text{ converge} \\ v \text{ diverge} \end{cases} \implies u + v \text{ diverge}$$

Propriété 7.44 Les sommes, les multiples, les produits de suites convergentes sont convergentes

Dans cette section u, v et w désignent des suites réelles et ℓ et ℓ' des nombres réels.

$$\begin{array}{ll} \textbf{Notation} \ \ \textbf{7.45} & u \to \ell^- \iff (u \to \ell \text{ et } u_n < \ell \text{ quand } n \to \infty) \\ u \to \ell^+ \iff (u \to \ell \text{ et } u_n > \ell \text{ quand } n \to \infty) \end{array}$$

Propriété 7.46 (Conservation des inégalités larges par passage à la limite) Soient $u \to \ell$ et $v \to \ell'$. Alors, $u \leqslant v \implies \lim u \leqslant \lim v$.

Propriété 7.47 (principe des gendarmes) Soient $u \to \ell$ et $w \to \ell$. Alors, $u \leqslant v \leqslant w \Longrightarrow v \to \ell$

7.5 Suites divergeant vers l'infini

Dans cette section, u et v désignent des suites réelles.

Définition 7.48 (divergence vers $-\infty$ (*ECS*)) Une suite diverge vers $-\infty$ si tout intervalle ouvert d'extrémité $-\infty$ contient les u_n pour tous les indices n, sauf pour un nombre fini d'entre eux.

Définition 7.49 (divergence vers
$$-\infty$$
) $u \to -\infty \iff (\forall m \in \mathbb{R}, \exists N \in \mathbb{N} : \forall n \geqslant N, u_n \leqslant m)$

Définition 7.50 (divergence vers $+\infty$ (ECS)) Une suite diverge vers $+\infty$ si tout intervalle ouvert d'extrémité $+\infty$ contient les u_n pour tous les indices n, sauf pour un nombre fini d'entre eux.

Définition 7.51 (divergence vers $+\infty$) $u \to +\infty \iff (\forall M \in \mathbb{R}, \exists N \in \mathbb{N} : \forall n \geqslant N, u_n \geqslant M)$

$$\textbf{Propriété 7.53 (multiple)} \quad u \to +\infty \implies \begin{cases} -\lambda u \to -\infty & \quad (\lambda > 0) \\ \lambda u \to +\infty & \quad (\lambda > 0) \end{cases}$$

Propriété 7.54 (produit)
$$u \to +\infty$$
 $v \text{ minorée par } m > 0$ $\Longrightarrow uv \to +\infty$

Propriété 7.55
$$u \to +\infty \iff \frac{1}{u} \to 0^+$$

Propriété 7.56
$$u \to -\infty \iff \frac{1}{u} \to 0^-$$

Propriété 7.57 (principe des gendarmes)
$$\begin{array}{c} u \leqslant v \\ u \to +\infty \end{array}$$
 $\Longrightarrow v \to +\infty$

7.6 Suites monotones

Dans cette section, u et v désignent des suites réelles.

Définition 7.59 u est strictement monotone (resp. monotone) ssi u est strictement décroissante ou strictement croissante (resp. décroissante ou croissante).

Méthode 7.60 (étude de monotonie d'une suite)

- Etudier le signe de $u_{n+1} u_n$ (recommandé)
- Lorsque $u_n > 0$, etudier le signe de $\frac{u_{n+1}}{u_n}$ (seulement si simplification, produits, puissances ou factorielles)
- Introduire une fonction f vérifiant $f(n) = u_n$ et dresser son tableau de variation

<u>Théorème</u> 7.61 (théorème de limite monotone) Une suite croissante u converge ssi u est majorée. Dans tous les cas, $\lim u = \sup_{n \in \mathbb{N}} u_n$

Théorème 7.62 (théorème de limite monotone) Une suite décroissante u converge ssi u est minorée. Dans tous les cas, $\lim u = \inf_{n \to \infty} u_n$.

Définition 7.63
$$u$$
 et v sont adjacentes \iff
$$\begin{cases} u \text{ croissante} \\ v \text{ décroissante} \\ v - u \to 0 \end{cases}$$

Théorème 7.64 Deux suites adjacentes convergent vers la même limite finie

7.7 Suites négligeables

Séquence 23

Dans cette section u, v, w, U et V désignent des suites de nombres de \mathbb{R} .

Définition 7.65
$$u = o(v)$$
 \longleftrightarrow $u = v \times \alpha \text{ avec } \alpha \to 0.$

Propriété 7.66
$$u \prec v \prec w \implies u \prec w$$

Propriété 7.67
$$\begin{pmatrix} u \prec w \\ v \prec w \end{pmatrix} \implies u + v \prec w$$

Propriété 7.68
$$\begin{pmatrix} u \prec U \\ v \prec V \end{pmatrix} \implies uv \prec UV$$

Propriété 7.69
$$u \prec v \implies u^k \prec v^k$$
 $(k \geqslant 1)$

Propriété 7.70
$$u \prec v \iff \lambda u \prec \mu v \qquad (\lambda \neq 0, \mu \neq 0)$$

Propriété 7.71 Soient
$$u$$
 et v suites ne s'annulant pas. Alors $u \prec v \iff \frac{1}{v} \prec \frac{1}{u}$

7.8 Suites équivalentes

Séquence 23

Dans cette section u, v, w, U et V désignent des suites de nombres de \mathbb{R} .

Propriété 7.73
$$u \sim v \sim w \implies u \sim w$$

Propriété 7.74 Deux suites réelles équivalentes ont le même signe à partir d'un certain rang

Propriété 7.75
$$\begin{cases} u \sim U \\ v \sim V \end{cases} \implies uv \sim UV$$

Propriété 7.76
$$u \sim v \implies u^k \sim v^k$$
 $(k \geqslant 1)$

Propriété 7.77 Soient u et v deux suites ne s'annulant pas. Alors, $u \sim v \iff \frac{1}{v} \sim \frac{1}{u}$

Propriété 7.78
$$u \to \ell \iff u \sim \ell$$
, $(\ell \neq 0)$

Propriété 7.79
$$u \to 0 \iff u = o(1)$$

Théorème 7.80 (croissance comparée) $\ln(n) \prec n^{\alpha} \prec e^{\beta n} \prec n!$ $(\alpha > 0, \beta > 0)$

8 Séries

Séquence 23 et 24

Dans cette section, S désigne la suite des sommes partielles d'une suite $u \in \mathbb{R}^{\mathbb{N}}$ définie par

$$S_n = \sum_{k=0}^n u_k \qquad (n \geqslant 0)$$

Remarque : une suite v peut être considérée comme une série de terme général u défini par

$$u_0 = v_0 \text{ et } u_k = v_k - u_{v-1} \qquad (k \geqslant 1)$$

8.1 Généralités

<u>Définition</u> 8.1 (convergence et divergence) S converge $\iff \sum_{k=0}^{\infty} u_k$ converge

Si S converge, on dit que la série de terme général u converge ou qu'elle est de nature convergeante. Si S diverge, on dit que la série de terme général u diverge ou qu'elle est de nature divergente.

<u>Définition</u> 8.2 (Somme d'une série) En cas de convergence de la suite S des sommes partielles, sa limite ℓ est appelée somme de la série et est notée

$$\sum_{k=0}^{\infty} u_k = \ell = \lim_{n \to \infty} S = \lim_{n \to \infty} \sum_{k=0}^{n} u_k$$

<u>Définition</u> 8.3 (Suite des restes) La suite R des reste d'une série convergente de terme général u est définie par

$$R_n = \sum_{k=0}^{\infty} u_k - S_n = \sum_{k=n+1}^{\infty} u_k \qquad (n \geqslant 0)$$

Propriété 8.4 Si la série de terme général u converge, alors $\sum_{k=0}^{\infty} u_k = S_n + R_n$ pour $n \geqslant 0$

Lorsque la suite u ne converge pas vers 0, on dit que la série diverge grossièrement

Propriété 8.6 (Relation de Chasles) $\sum_{k=0}^{\infty} u_k$ converge $\iff \sum_{k=m}^{\infty} u_k$ converge $(m \in \mathbb{N})$

Et en cas de convergence, on a

$$\sum_{k=0}^{\infty} u_k = \sum_{k=0}^{m-1} u_k + \sum_{k=m}^{\infty} u_k \qquad (m \in \mathbb{N})$$

Propriété 8.7 (linéarité) Soient $\lambda \in \mathbb{R}$, $\mu \in \mathbb{R}$ et u et v les termes généraux de deux séries convergentes, alors la série de terme général $\lambda u + \mu v$ converge et

$$\sum_{k=0}^{\infty} (\lambda u_k + \mu v_k) = \lambda \sum_{k=0}^{\infty} u_k + \mu \sum_{k=0}^{\infty} v_k$$

Propriété 8.8 (addition) Si $\sum u_n$ et $\sum v_n$ convergent, alors $\sum (u_n + v_n)$ converge Si $\sum u_n$ converge et si $\sum v_n$ diverge, alors $\sum (u_n + v_n)$ diverge.

Définition 8.9 (convergence absolue) On dit qu'une série de terme général u converge absolument si et seulement si la série de terme général |u| converge

$$\sum_{k=0}^{\infty}u_k$$
 converge absolument $\Longleftrightarrow \sum_{k=0}^{\infty}|u_k|$ converge

Propriété 8.10 (convergence absolue et inégalité) Si la série $\sum u_k$ converge absolument, alors $\overline{\text{la série } \sum u_k}$ converge et de plus

$$\left|\sum_{k=0}^{\infty}u_k\right|\leqslant\sum_{k=0}^{\infty}|u_k|$$

8.2 Séries à termes positifs

Dans cette section u est à terme positifs ou nuls (mais les énoncés sont aussi valables pour les suites négatives ou nulles quite à tout multiplier par -1)En pratique, il faut que u reste de signe constant à partir d'un certain rang.

Propriété 8.11 (équivalent) Soient u et v deux suites à termes positifs ou nuls. Si $u \sim v$, alors les séries de termes généraux u et v ont la même nature Plus généralement, on a

$$u \sim v \\ u_n \text{ de signe constant pour } n \geqslant N \\ \} \Longrightarrow \sum_{n=0}^\infty u_k \text{ a même nature que } \sum_{n=0}^\infty v_k$$

Propriété 8.12 (inégalité) Soient u et v deux suites telles que $0 \le u_n \le v_n$ pour $n \ge 0$.

- Si $\sum u_k$ diverge, alors $\sum v_k$ diverge
- Si $\sum v_k$ converge, alors $\sum u_k$ converge et on a $0 \leqslant \sum_{k=0}^{\infty} u_k \leqslant \sum_{k=0}^{\infty} v_k$

Propriété 8.13 (petit o) Soient u et v deux suites à termes positifs ou nuls telles que $u_n = o(v_n)$.

- Si $\sum u_k$ diverge, alors $\sum v_k$ diverge Si $\sum v_k$ converge, alors $\sum u_k$ converge.

8.3 Séries de référence

Dans toute cete section, α et x désignent des nombres réels

Propriété 8.14 (série de Riemann)
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 converge $\iff \alpha > 1$

Propriété 8.15 (convergence) $\sum x^n, \sum nx^{n-1} \text{ et } \sum n(n-1)x^{n-2} \text{ convergent } ssi -1 < x < 1.$

Propriété 8.16 (série géométrique)
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 $(-1 < x < 1)$

Propriété 8.17 (série géométrique⁽¹⁾)
$$\sum_{n=1}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$
 (-1 < x < 1)

Propriété 8.19 (exponentielle)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$
 $(x \in \mathbb{R})$

Fonctions réelles (comportement local)

9.1 Limites

Séquence 6

9.1.1 Limites finies

Dans cette section, ℓ et ℓ' désignent des nombres réels, f, g et h désignent des fonctions réelles définie sur un intervalle I et a désigne un élément ou une extrémité finie de I. Pour simplifier, on note

$$\underbrace{f \xrightarrow{d} \ell}_{\text{anon standard}} \iff \lim_{x \to a} f(x) = \ell \iff \begin{vmatrix} f \text{ tends vers } \ell \text{ en } a \\ f \text{ converge vers } \ell \text{ en } a \\ f \text{ admet } \ell \text{ comme limite en } a \end{vmatrix}$$

Définition 9.1 (limite) f admet ℓ pour limite en a ssi pour tout nombre $\varepsilon > 0$, il existe un nombre $\alpha > 0$ tel que pour tout élément x de $I \cap [a - \alpha, a + \alpha]$, on a $|f(x) - \ell| \leq \varepsilon$

$$f \underset{a}{\rightarrow} \ell \iff (\forall \varepsilon > 0, \exists \alpha > 0 : \forall x \in I \cap [a - \alpha, a + \alpha], |f(x) - \ell| \leqslant \varepsilon)$$

Propriété 9.2 (unicité de la limite) La limite d'une fonction en un point est unique, lorsqu'elle existe.

9.1.2 Généralisation du concept de limite

Il existe un formalisme qui permet d'unifier les 25 différents aspects des limites :

Pour tout voisinage V de la limite ℓ , il existe un voisinage U du point a tel que

$$\underbrace{x \in U}_{\text{quand } x \text{ est proche de } a} \implies \underbrace{f(x) \in V}_{f(x) \text{ est proche de } \ell}$$

mais il n'est pas au programme et nous ne l'utilisons ici que pour illustrer et comprendre les concepts de limite, dont nous ne présenteront que quelques variantes

<u>Définition</u> 9.3 (limite à gauche) f admet ℓ pour limite à gauche en a ssi pour tout $\varepsilon > 0$, il existe un nombre $\alpha > 0$ tel que pour tout élément x de $I \cap [a - \alpha.a[$, on a $|f(x) - \ell| \le \varepsilon$

$$\begin{array}{ll} \lim\limits_{\substack{x\to a^-\\ x0, \exists \alpha>0: \forall x\in I\cap [a-\alpha,a[,|f(x)-\ell|\leqslant \varepsilon)]\right)$$

Définition 9.4 (limite à droite) f admet ℓ pour limite à droite en a ssi pour tout $\varepsilon > 0$, il existe un nombre $\alpha > 0$ tel que pour tout élément x de $I \cap [a, a + \alpha]$, on a $|f(x) - \ell| \le \varepsilon$

$$\begin{array}{ll} \lim\limits_{\substack{x\to a^+\\ x\to a}} f(x) &= \ell\\ \lim\limits_{\substack{x\to a\\ x>a\\ f\left(a^+\right)}} f(x) &= \ell\\ \end{array} \iff \left(\forall \varepsilon>0, \exists \alpha>0: \forall x\in I\cap]a, a+\alpha], |f(x)-\ell|\leqslant \varepsilon\right)$$

<u>Définition</u> 9.5 (limite en $+\infty$) f tends vers ℓ en $+\infty$ ssi pour tout nombre $\varepsilon > 0$, il existe un nombre $M \in \mathbb{R}$ tel que pour tout élément x de $I \cap [M, +\infty[$, on a $|f(x) - \ell| \le \varepsilon$

$$f \underset{+\infty}{\to} \ell \Longleftrightarrow \lim_{x \to +\infty} f(x) = \ell \Longleftrightarrow (\forall \varepsilon > 0, \exists M \in \mathbb{R} : \forall x \in I \cap [M, +\infty[, |f(x) - \ell| \leqslant \varepsilon)]$$

Définition 9.6 (limite en $-\infty$) f tends vers ℓ en $-\infty$ ssi pour tout nombre $\varepsilon > 0$, il existe un nombre $m \in \mathbb{R}$ tel que pour tout élément x de $I \cap]-\infty, m]$, on a $|f(x)-\ell| \leq \varepsilon$

$$f \to \ell \Longleftrightarrow \lim_{x \to -\infty} f(x) = \ell \Longleftrightarrow (\forall \varepsilon > 0, \exists m \in \mathbb{R} : \forall x \in I \cap] - \infty, m], |f(x) - \ell| \leqslant \varepsilon)$$

<u>Définition</u> 9.7 (divergence vers $+\infty$) f diverge vers $+\infty$ en a ssi pour tout nombre $M \in \mathbb{R}$, il existe un nombre $\alpha > 0$ tel que pour tout élément x de $I \cap [a - \alpha, a + \alpha]$, on a $f(x) \geqslant M$

$$f \to +\infty \iff \lim_{x \to a} f(x) = +\infty \iff (\forall M \in \mathbb{R}, \exists \alpha > 0 : \forall x \in I \cap [a - \alpha, a + \alpha], f(x) \geqslant M)$$

Définition 9.8 (divergence vers $-\infty$) f diverge vers $-\infty$ en a ssi pour tout nombre $m \in \mathbb{R}$, il existe un nombre $\alpha > 0$ tel que pour tout élément x de $I \cap [a - \alpha, a + \alpha]$, on a $f(x) \leq m$

$$f \to -\infty \iff \lim_{x \to \infty} f(x) = -\infty \iff \left(\forall m \in \mathbb{R}, \exists \alpha > 0 : \forall x \in I \cap [a - \alpha, a + \alpha], f(x) \leqslant m \right)$$

Notation 9.9 (limite par valeurs supérieures) $f \to \ell^+ \iff f \to \ell$ avec $f(x) > \ell$ $(x \to a)$

Notation 9.10 (limite par valeurs inférieurse) $f \xrightarrow{a} \ell^{-} \iff f \xrightarrow{a} \ell$ avec $f(x) < \ell$ $(x \to a)$

9.1.3 Opérations

Dans cette section, nous considérons principalement les opérations concernant les limites finies en un point réel. Au besoin, on utilisera le bon sens pour déterminer les opérations correspondantes pour les autres variantes de limite, car il n'est pas question de les expliciter toutes.

Propriété 9.11 (valeur absolue) $f \rightarrow \ell \implies |f| \rightarrow |\ell|$

Théorème 9.12 (somme) $\begin{cases} f \to \ell \\ g \to \ell' \\ a \end{cases} \Longrightarrow f + g \to \ell + \ell'$

 $\begin{array}{ll} \textbf{Th\'{e}or\`{e}me 9.13 (produit)} & \left. \begin{matrix} f \to \ell \\ a \\ g \overset{}{\underset{a}{\to}} \ell' \end{matrix} \right\} \Longrightarrow f \times g \overset{}{\underset{a}{\to}} \ell \times \ell' \\ \end{array}$

Propriété 9.14 $f \underset{a}{\rightarrow} \ell \neq 0 \implies (\exists \alpha > 0 : \forall x \in]a - \alpha, a + \alpha[, f(x) \neq 0)$

<u>Théorème</u> 9.16 (composition) Soient I et J des intervalles, $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ des applications, ℓ et b des nombres réels et a un élément ou une extrémité de I. Alors,

$$\begin{pmatrix}
f(I) \subset J \\
f \to b \\
g \to \ell \\
b
\end{pmatrix} \Longrightarrow g \circ f \to \ell$$

<u>Théorème</u> 9.17 (composée avec une suite) Soient $\ell \in \mathbb{R}$, a un élément ou une extrémité d'un intervalle $I, f: I \to \mathbb{R}$ une application et u une suite à valeurs dans I. Alors,

$$\left. \begin{array}{l} u \to a \\ f \xrightarrow{a} \ell \\ a \end{array} \right\} \Longrightarrow f(u_n) \to \ell$$

Propriété 9.18 (compatibilité avec la relation d'ordre) Soient f et g deux fonctions réelles convergentes en a. Alors, $f \leqslant g \implies \lim_a f \leqslant \lim_a g$

 $\underbrace{ \text{Propriét\'e}}_{} \text{ 9.19 (principe des gendarmes)} \left. \begin{array}{c} f \leqslant g \leqslant h \\ f \xrightarrow{a} \ell \\ h \xrightarrow{a} \ell \end{array} \right\} \implies g \xrightarrow{a} \ell$

Corollaire 9.20 (principe des gendarmes $\rightarrow 0$) $\begin{cases} |f| \leqslant g \\ g \xrightarrow{a} 0 \end{cases} \implies f \xrightarrow{a} 0$

9.1.4 Généralisations et opérations

De même qu'il existe de multiples situations applicables au concept de limite, il existe une multitude d'opérations possibles entre limites. Le but de cette section est de permettre de distinguer les opérations possibles des autres via le concept de forme indeterminée.

Pour simplifier les notations, nous utiliserons la notation symbolique et pratique suivante (à utiliser au brouillon seulement, car ne faisant pas partie officiellement du cours)

$$\ell + \infty = +\infty$$

qui résume le théorème suivant $\left. egin{matrix} f &\to \ell \\ a \\ g &\to +\infty \end{array} \right\} \Longrightarrow f + g &\to +\infty.$

• Opérations légales. Les opérations de la section précédente restent valides lorsque x tends vers un point du type $-\infty$, a^- , a, a^+ , $+\infty$.

Par contre, lorsque les limites sont du type $-\infty$, ℓ^- , ℓ^+ ou $+\infty$, cela peut être différent.

Quelques opérations valides (utilisant la notation précédente et parfois ∞ à la place de $+\infty$):

$$\begin{array}{lll} \infty + \infty = +\infty & \ell + \infty & (\ell \in \mathbb{R}) \\ \infty \times \infty = +\infty & \ell \times \infty = +\infty & (\ell > 0) \\ -\infty \times \infty = -\infty & -\infty \times (-\infty) = +\infty \\ \frac{1}{+\infty} = 0^+ & \frac{1}{0^+} = +\infty \\ \ell' + \ell^+ = (\ell' + \ell)^+ & -(\ell^-) = (-\ell)^+ & (\ell \in \mathbb{R}, \ell' \in \mathbb{R}) \end{array}$$

• Formes indeterminées. Les formes indeterminées les plus fréquentes sont

$$-\infty + \infty$$
, $0 \times \infty$, 1^{∞} , $\frac{\infty}{\infty}$, $\frac{0}{0}$, etc.

En général, on utilise le bon sens pour déterminer si une opération est légale ou pas, les formes indeterminées apparaissant dès qu'il y a un conflit entre deux limites (l'une allant dans un sens contrecarré par l'autre)

9.2 Continuité en un point

Séquence 6

Dans toute cette section, $\bar{f}:I\to\mathbb{R}$ désigne une application définie sur un intervalle I contenant a 9.2.1 Généralités

<u>Définition</u> 9.22 f continue en $a \iff f \xrightarrow{a} f(a)$

Définition 9.23
$$f$$
 continue à gauche en $a \Longleftrightarrow f \underset{a^{-}}{\rightarrow} f(a) \Longleftrightarrow f(a^{-}) = f(a)$

Définition 9.24
$$f$$
 continue à droite en $a \Longleftrightarrow f \underset{a^+}{\rightarrow} f(a) \Longleftrightarrow f(a^+) = f(a)$

Propriété 9.25
$$f$$
 continue en $a \iff f(a^-) = f(a) = f(a^+) \iff \begin{cases} f \text{ continue à gauche en } a \\ f \text{ continue à droite en } a \end{cases}$

<u>Théorème</u> 9.26 (prolongement par continuité) Soient I un intervalle contenant a et une application $f: I \setminus \{a\} \to \mathbb{R}$ vérifiant $f \to \ell \in \mathbb{R}$. Alors, l'application \tilde{f} définie sur I par

$$\tilde{f}(x) := \begin{cases} f(x) & \text{si } x \neq a \\ \ell & \text{si } x = a \end{cases} \text{ est continue en } a$$

9.2.2 Opérations

Propriété 9.27 (opérations algébriques) Soient f et g des fonctions continues en a. Alors, les fonctions f + g, $f \times g$ et λf sont continues en a pour $\lambda \in \mathbb{R}$.

Propriété 9.28 (quotient) Soient f et g des fonctions continues en a telles que $g(a) \neq 0$. Alors, la fonction $\frac{f}{g}$ est définie au voisinage de a et continue en a.

<u>Théorème</u> 9.29 (composée) Soient deux applications $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ avec $a \in I$. Alors,

$$\left. \begin{array}{l} f(I) \subset J \\ f \text{ continue en } a \\ g \text{ continue en } f(a) \end{array} \right\} \Longrightarrow g \circ f \text{ continue en } a$$

9.3 Dérivée en un point

Séquence 12

9.3.1 Généralitées

Dans cette section, f désigne une fonction à valeurs dans \mathbb{R} définie sur un intervalle contenant au moins 2 points, dont a. Pour la dérivée à gauche (resp. à droite), I doit contenir un point à gauche (resp. à droite) de a.

Propriété 9.31 Le nombre dérivé en a est unique lorsqu'il existe.

Définition 9.32 (dérivabilité) f est dérivable en a ssi f admet un nombre dérivé en a

Propriété 9.33 Si f est dérivable en a, il existe une fonction $\alpha \to a0$ telle que

$$f(x) = f(a) + f'(a)(x - a) + (x - a)\alpha(x)$$
 $(x \in I)$

 $\underline{\text{D\'efinition}} \ \ \textbf{9.34} \ \ \textbf{(d\'eriv\'ee \`a gauche)} \quad f'_g(a) = \lim_{x \to a^-} \frac{f(x) - f(a)}{x - a}$

$$\underline{\text{D\'efinition}} \ \ \textbf{9.35} \ \ \textbf{(d\'eriv\'ee à droite)} \quad f'_d(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$$

Propriété 9.36 Lorsqu'elles existent, les dérivées à droite et à gauche en a sont uniques

Propriété 9.37 Soit I un intervalle contenant un point à gauche et à droite de a. Alors, $f: I \to \mathbb{R}$ est dérivable en a ssi f admet des dérivées à gauche et à droite égales en a. De plus, dans ce cas

$$f'_g(a) = f'(a) = f'_d(a)$$

Propriété 9.38 (condition nécessaire de dérivabilité) f dérivable en $a\Longrightarrow f$ continue en a

9.3.2 Opérations

Dans cette section f, g et h désignent des fonctions dérivbles en a, à valeurs dans \mathbb{R} , définies sur un intervalle I contenant au moins 2 points, dont a.

Propriété 9.39 (somme) f+g est dérivable en a et (f+g)'(a)=f'(a)+g'(a)

Propriété 9.40 (multiples) Pour $\lambda \in \mathbb{R}$, $\lambda \cdot f$ est dérivable en a et $(\lambda \cdot f)'(a) = \lambda \cdot f'(a)$

Propriété 9.41 (produit) $f \times g$ est dérivable en a et $(f \times g)'(a) = f'(a) \times g(a) + f(a) \times g'(a)$

<u>Propriété</u> 9.42 (quotient) Soient f et g des fonctions dérivables en a telles que $g(a) \neq 0$. Alors, le quotient $\frac{f}{a}$ est dérivable en a et

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \times g(a) - f(a) \times g'(a)}{g(a)^2}$$

<u>Théorème</u> 9.43 (composée) Soit $f: I \to \mathbb{R}$ dérivable en a, avec $f(I) \subset J$, et soit $g: J \to \mathbb{R}$ dérivable en f(a), alors, la fonction $g \circ f$ est dérivable en a et

$$(g \circ f)'(a) = f'(a) \times g' \circ f(a)$$

<u>Théorème</u> 9.44 (bijection réciproque) Soit f une bijection dérivable en a, avec $f'(a) \neq 0$. Alors, la bijection réciproque f^{-1} est dérivable en b = f(a) et

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$

Méthode 9.45 (pour retrouver la dérivée d'une bijection réciproque)

Illustration à l'aide des bijections réciproques tan et Arctan

1. Remarquer que $f^{-1} \circ f(x) = x$ $(x \in I)$

$$\operatorname{Arctan}\left(\tan(x)\right) = x \qquad \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$$

2. Dériver la relation précédente pour obtenir que $f'(x) \times (f^{-1})'(f(x)) = 1$ $(x \in I)$

$$\tan'(x) \times \operatorname{Arctan}'(\tan(x)) = 1 \qquad \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$$

3. Diviser par $f'(x) \neq 0$ et simplifier en utilisant que y = f(x) avec $x = f^{-1}(y)$ pour obtenir que

$$(f^{-1})'(y) = (f^{-1})'(f(x)) = \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}$$

Après division par $tan'(x) = tan(x)^2 + 1$, il vient

$$\operatorname{Arctan}'(\tan(x)) = \frac{1}{\tan'(x)} = \frac{1}{\tan(x)^2 + 1} \qquad \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$$

Comme y = tan(x) avec x = Arctan(y) pour $y \in \mathbb{R}$ et $-\frac{\pi}{2} < x < \frac{\pi}{2}$, il suit

$$Arctan'(y) = \frac{1}{y^2 + 1}$$
 $(y \in \mathbb{R})$

9.4 Comparaison des fonctions

Séquence 27

9.4.1 Fonctions négligeables

Dans cette section, a désigne un nombre réel ou un symbole $a=+\infty$ ou $a=-\infty$ et f,g,h,F,G et ε désignent des fonctions définies autour de $a\in\mathbb{R}$, c'est-à-dire sur un intervalle I admettant a comme élément ou comme extrémité. Pour simplifier, on note

$$\underbrace{f \prec g}_{\text{non standard}} \iff \begin{vmatrix} f = o_a(g) \\ f \text{ est n\'egligeable devant } g \text{ en } a \end{vmatrix}$$

<u>Définition</u> 9.46 (fonction négligeable) $f = o_a(g) \iff f(x) = g(x) \times \varepsilon(x)$ avec $\varepsilon \xrightarrow{g} 0$

<u>Propriété</u> 9.47 (transitivité) $f \prec g \prec h \implies f \prec h$

Propriété 9.48 (multiple) $f \prec g \iff \lambda f \prec \mu g \qquad (\lambda \in \mathbb{R}^*, \mu \in \mathbb{R}^*)$

<u>Propriété</u> 9.50 (produit) $(f \prec F \text{ et } g \prec G) \implies fg \prec FG$

Propriété 9.51 (puissance) $f \prec q \implies f^k \prec q^k$ $(k \geqslant 1)$

9.4.2 Fonctions équivalentes

Dans cette section, a désigne un nombre réel ou un symbole $a=+\infty$ ou $a=-\infty$ et f,g,h,F,G et β désignent des fonctions définies autour de $a\in\mathbb{R}$, c'est-à-dire sur un intervalle I admettant a comme élément ou comme extrémité.

<u>Définition</u> 9.53 (fonctions équivalentes)

$$\left. \begin{array}{c} f \sim g \\ f \text{ est \'equivalente \`a } g \text{ en } a \end{array} \right| \iff f(x) = g(x) \times \beta(x) \text{ avec } \beta \mathop{\rightarrow}\limits_a 1$$

Propriété 9.54 (lien avec les fonctions négligeables) $f \sim g \iff f = g + o_a(g)$

Propriété 9.55 (reflexivité) $f \sim f$

Propriété 9.56 (symétrie) $f \sim g \iff g \sim f$

<u>Propriété</u> 9.58 (signe) $f \sim g \implies f(x)$ et g(x) ont les mêmes signes autour de a: ils sont tous les deux nuls, strictement positifs ou strictement négatifs

<u>Propriété</u> 9.59 (produit) $(f \sim_a F \text{ et } g \sim_a G) \implies fg \sim_a FG$

<u>Propriété</u> 9.61 (quotient) $f \sim g \iff \frac{1}{f} \sim \frac{1}{g}$ (f non nul autour de a)

 $\underline{ \mbox{Th\'eor\`eme}} \ \ \textbf{9.64 (croissances compar\'ees)} \ \ \ln(x)^{\alpha} \underset{0^{+}}{\prec} x^{-\beta}$

9.5 Développements limités

Séquence 23 et 33

Dans cette section, n désigne un nombre entier positif ou nul, f désigne une fonction, à valeurs dans \mathbb{R} , définie sur un intervalle I, contenant au moins deux points, dont $a \in \mathbb{R}$ est un élément ou une extrémité. Nous abbrégeons « développement limité à l'ordre n en a » par DL_a^n (notation non standard) et nous notons le DL_a^n d'une fonction f de la façon suivante :

$$\underbrace{\mathrm{DL}_{a}^{n}[f]}_{\text{non standard}} = \sum_{k=0}^{n} c_{k}(x-a)^{k}$$

Par ailleurs, nous utilisons la notation $A \stackrel{*}{=} B$ pour exprimer que le terme A de gauche est égal à la troncature (obtenue en supprimant les termes négligeables) du terme B de droite 9.5.1 Généralités

<u>Définition</u> 9.65 (développement limité) f admet un DL_a^n ssi il existe des nombres c_0, \cdots, c_n de $\mathbb R$ tels que $f(x) = \sum_{i=0}^n c_k (x-a)^k + o_a \left((x-a)^n \right)$

Propriété 9.66 (unicité) Lorsqu'il existe, le $\mathrm{DL}_a^n[f]$ est unique $(c_0, \dots, c_n \text{ sont uniques})$.

9.5.2 Opérations

Propriété 9.67 (multiple) Si f et g ont un DL_a^n , alors $\mathrm{DL}_a^n[\lambda f] = \lambda \, \mathrm{DL}_a^n[f]$ $(\lambda \in \mathbb{R})$

Propriété 9.68 (somme) Si f et g ont un DL_a^n , alors $DL_a^n[f+g] = DL_a^n[f] + DL_a^n[g]$

Propriété 9.69 (produit) Si f et g ont un DL_a^n , alors $DL_a^n[f \times g] \stackrel{*}{=} DL_a^n[f] \times DL_a^n[g]$

9.5.3 Développements limités de référence

Propriété 9.70 (quotient)
$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + o_0(x^n) \qquad (n \in \mathbb{N})$$

Propriété 9.71 (exponentielle)
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o_0(x^n)$$
 $(n \in \mathbb{N})$

Propriété 9.72 (logarithme)
$$\ln(1+x) = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + o_0(x^n)$$
 $(n \in \mathbb{N})$

Propriété 9.73 (cosinus)
$$\cos(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o_0(x^{2n})$$
 $(n \in \mathbb{N})$

Propriété 9.74 (sinus)
$$\sin(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o_0(x^{2n+1})$$
 $(n \in \mathbb{N})$

9.5.4 Formule de Taylor-Young

<u>Théorème</u> 9.76 (Formule de Taylor-Young) Soit $n \in \mathbb{N}$ et f une fonction, à valeurs dans \mathbb{R} , de classe \mathbb{C}^n sur un intervalle I contenant a. Alors,

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + o_{a}((x-a)^{n}).$$

Propriété 9.77 (primitive) Soit F une primitive d'une fonction f admettant un DL_a^n , alors F admet un DL_a^{n+1} , que l'on trouvre en intégrant celui de f. autrement dit,

$$DL_a^{n+1}[F]' = DL_a^n[f]$$

Propriété 9.78 (dérivée) Si f admet un $DL_a^{n+1}[f]$ et si f' existe et admet un $DL_a^n[f']$, alors

$$DL_a^{n+1}[f]' = DL_a^n[f']$$

10 Fonctions réelles (comportement global) Séquence 11

10.1 Fonctions réciproques

Propriété 10.1 (graphe d'une bijection réciproque) Soient f une bijection d'un intervalle I dans un intervalle J. Alors, le graphe de f est le symétrique du graphe de f^{-1} par rapport à la droite d'équation y = x

10.2 Fonctions minorées, majorées et bornées

Dans toute cette section, m et M désignent des nombres réels, f désigne une fonction réelle et D un ensemble non vide inclus dans son ensemble de définition

<u>Définition</u> 10.2 (fonction majorée) f est majorée sur D ssi il existe M tel que $f(x) \leq M$ ($x \in D$)

<u>Définition</u> 10.3 (fonction minorée) f est minorée sur Dssi il existe m tel que $m \le f(x)$ ($x \in D$)

<u>Définition</u> 10.4 (fonction bornée) f est bornée sur Dssi il existe M tel que $|f(x)| \leq M$ $(x \in D)$

Propriété 10.5 f est bornée sur D ssi f est minorée et majorée sur D

Propriété 10.6 Les fonctions constantes sont bornées sur $\mathbb R$

Propriété 10.7 L'ensemble des fonctions bornées sur D est stable par addition, multiplication externe et multiplication. En particulier, c'est un sous espace vectoriel de $\mathcal{F}(D.\mathbb{R})$

10.3 Fonctions monotones

Dans cette section, I est un intervalle contenant au moins 2 points et f est une fonction à valeurs réelle définie sur I

Définition 10.8 (croissance)

$$f$$
 est croissante sur $I \iff \begin{cases} f(y) \geqslant f(x) \\ f(y) > f(x) \end{cases}$ $(x < y \text{ dans } I)$

Définition 10.9 (décroissance)

$$f$$
 est $\begin{vmatrix} \text{décroissante} \\ \text{décroissante} \end{vmatrix}$ sur $I \iff \begin{vmatrix} f(y) \leqslant f(x) \\ f(y) < f(x) \end{vmatrix}$ $(x < y \text{ dans } I)$

Définition 10.10 Soit $f: I \to \mathbb{R}$. Alors, f est strictement monotone (resp. monotone) ssi f est strictement décroissante ou strictement croissante (resp. décroissante ou croissante).

Méthode 10.11 (Pour étudier la monotonie d'une fonction f)

- 1. Fixer x < y dans I
- 2. Etudier le signe de f(y) f(x)

 ${\bf Propriété} \ \ {\bf 10.12} \quad {\bf Une \ fonction \ monotone \ sur \ un \ segment \ est \ born\'ee}$

Propriété 10.13 Une fonction croissante sur [a,b[est minorée sur [a,b[

Propriété 10.14 Une fonction croissante sur [a,b] est majorée sur [a,b]

Propriété 10.15 Une fonction décroissante sur [a,b] est minorée sur [a,b]

Propriété 10.16 Une fonction décroissante sur [a,b] est majorée sur [a,b]

<u>Théorème</u> 10.17 (limite monotone) Une fonction monotone sur un intervalle ouvert I admet une limite finie à droite et à gauche en chaque point de I

Pour la suite de cette section $a \in \mathbb{R}$, $b \in \mathbb{R}$ ou $b = +\infty$ et f désigne une foinction définie sur [a,b].

<u>Théorème</u> 10.18 (limite monotone) Soit f une fonction croissante sur [a,b[. Alors,

f majorée \iff f admet une limite finie en b

f non majorée \iff f diverge vers $+\infty$ en b

Dans tous les cas, on a $\lim_{x\to b} f(x) = \sup_{[a,b[} f(x)$.

Théorème 10.19 (limite monotone) Soit f une fonction décroissante sur [a,b]. Alors,

f minorée \iff f admet une limite finie en b

f non minorée \iff f diverge vers $-\infty$ en b

Dans tous les cas, on a $\lim_{x\to b} f(x) = \inf_{[a,b[} f(x)$.

10.4 Fonctions paires et impaires

10.4.1 Généralités

Dans cette section, $f:I\to\mathbb{R}$ désigne une application définie sur un ensemble I symétrique par rapport à 0, c'est-à-dire vérifiant

$$x \in I \iff -x \in I$$
 (10.1)

Remarque: dans la proposition (10.1), on peut remplacer le symbôle \iff par \implies

Définition 10.20 (parité) f est paire sur $I \iff f(-x) = f(x)$ $(x \in I)$

<u>Définition</u> 10.21 (imparité) f est impaire sur $I \iff f(-x) = -f(x)$ $(x \in I)$

Méthode 10.22 (Pour déterminer la parité d'une fonction sur I)

- 1. Vérifier rapidement que I satisfait (10.1)
- 2. Fixer $x \in I$ et simplifier f(-x) (étape généralement simple, mais parfois technique).
- 3. Si l'on obtient f(x), la fonction f est paire.

Si l'on obtient -f(x), la fonction est impaire.

Dans les autres cas, la fonction est en général ni paire, ni impaire mais pas toujours.

Propriété 10.23 Les fonctions constantes sont paires sur \mathbb{R}

Propriété 10.24 La fonction identité de \mathbb{R} est impaire sur \mathbb{R}

Propriété 10.25 (CN d'imparité) Si $0 \in I$ et si f est impaire sur I, alors f(0) = 0

10.4.2 Opérations

Dans cette section, nous détaillons rapidement quelques opérations qui permettent de déterminer plus rapidement (que par le calcul) si une fonction est paire ou impaire. Pour expliciter ces opérations, nous utilisons une notation pratique mais non standard

$$\begin{array}{ll} paire + paire = paire \\ paire \times paire = paire \\ paire \times impaire = paire \\ \hline impaire \times impaire = paire \\ \hline \frac{paire}{impaire} = impaire \\ \hline \frac{paire}{impaire} = impaire \\ \hline \frac{paire}{impaire} = paire \\ \hline \frac{impaire}{impaire} = paire \\ \hline impaire \circ impaire = paire \\ \hline \end{array}$$

Comme pour les limites, il existe quelques opérations, dont il n'est pas possible à priori de prévoir le resultat (formes indeterminées), sans faire un calcul détaillé, comme « paire + impaire = ? »

Propriété 10.26 (dérivée) Soit
$$f$$
 une fonction dérivable sur I . Alors, f paire sur $I \implies f'$ impaire sur I f impaire sur $I \implies f'$ paire sur I

Propriété 10.27 (réciproque) Soit $f: I \to J$ une bijection impaire. Alors, J satisfait (10.1) et la bijection réciproque f^{-1} est impaire sur J

10.5 Fonctions périodiques

10.5.1 Généralités

Dans cette section, T désigne un nombre réel non nul et $f:I\to\mathbb{R}$ désigne une application définie sur un ensemble I invariant par la translation suivante

$$x \in I \iff x + T \in I$$
 (10.2)

 $Remarque: dans \ la \ proposition \ (10.2), \ on \ ne \ peut \ pas \ remplacer \ le \ symbôle \Longleftrightarrow par \ le \ symbôle \Longrightarrow$

Méthode 10.30 (Pour déterminer la périodicité d'une fonction sur I)

- 1. Intuiter le plus petit nombre réel (en valeur absolue) pour lequel I satisfait (10.1) et qui semble convenir pour f
- 2. Fixer $x \in I$ et simplifier f(x+T) (étape généralement simple, mais parfois technique).
- 3. Si l'on obtient f(x), la fonction f est périodique, de période T.
 Si l'on obtient -f(x), la fonction est antipériodique, d'anti-période T.
 Dans les autres cas, la fonction est en général ni périodique, ni antipériodique mais pas toujours.

Propriété 10.31 (multiple d'une période)
$$T$$
 période $\Longrightarrow k \times T$ période $(k \in \mathbb{Z}^*)$

Propriété 10.32
$$T$$
 anti-période \Longrightarrow $\begin{cases} k \times T & \text{période} \\ k \times T & \text{anti-période} \end{cases}$ $(k \in \mathbb{Z}^* \text{ pair})$ $(k \in \mathbb{Z}^* \text{ impair})$

Propriété 10.33 Pour $T \neq 0$, les fonctions constantes sont T-périodiques sur \mathbb{R}

10.5.2 Opérations

Dans cette section, nous détaillons rapidement quelques opérations qui permettent de déterminer plus rapidement (que par le calcul) si une fonction est périodique (pour le même $T \neq 0$) ou antipériodique. Pour expliciter ces opérations, nous utilisons une notation pratique mais non standard

$$\begin{array}{ll} p\'{e}riodique + p\'{e}riodique = p\'{e}riodique \\ p\'{e}riodique \times p\'{e}riodique = p\'{e}riodique \\ antip\'{e}riodique \times antip\'{e}riodique = p\'{e}riodique \\ antip\'{e}riodique \\ \hline \frac{p\'{e}riodique}{antip\'{e}riodique} = antip\'{e}riodique \\ \hline \frac{p\'{e}riodique}{antip\'{e}riodique} = p\'{e}riodique \\ \hline \frac{ntip\'{e}riodique}{antip\'{e}riodique} = p\'{e}riodique \\ \hline \frac{ntip\'{e}riodique}{antip\'{e}riodique} = p\'{e}riodique \\ \hline \frac{ntip\'{e}riodique}{antip\'{e}riodique} = p\'{e}riodique \\ \hline \frac{ntip\'{e}riodique}{ntip\'{e}riodique} = p\'{e}riodique} \\$$

Comme pour les limites, il existe quelques opérations, dont il n'est pas possible à priori de prévoir le resultat (formes indeterminées), sans faire un calcul détaillé, comme

```
périodique + antipériodique =? fonction o antipériodique =?
```

Propriété 10.34 (dérivée) Soit f une fonction dérivable sur I. Alors,

```
f T-périodique sur I \implies f' T périodique sur I f T-antipériodique sur I \implies f' T-antipériodique sur I
```

10.6 Fonctions continues

10.6.1 Généralités

Dans cette section, D désigne un ensemble et $f:A\to\mathbb{R}$ une application définie sur un domaine A réel

<u>Définition</u> 10.35 f continue sur $D \iff (f \text{ est continue en } a \text{ pour } a \in D)$ $(D \subset D_f)$

Propriété 10.36 Les fonctions constantes sont continues.

Propriété 10.37 La fonction identité est continue.

Propriété 10.38 Les fonctions polynômes sont continues.

Propriété 10.40 $C(I,\mathbb{R})$ est un \mathbb{R} -SEV de $\mathcal{F}(I,\mathbb{R})$

Propriété 10.41 (opérations algébriques) La somme, les multiples et le produit de fonctions continues sur un ensemble D est continue sur D.

Propriété 10.42 (quotient) Soient f et q des fonctions continues sur D telles que $q(a) \neq 0$ $(a \in D)$ Alors la fonction $\frac{f}{g}$ est définie et continue sur D.

Théorème 10.43 (composée) Soient deux applications $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$. Alors,

$$\left. \begin{array}{l} f(I) \subset J \\ f \text{ continue sur } I \\ g \text{ continue sur } J \end{array} \right\} \Longrightarrow g \circ f \text{ continue sur } I$$

Propriété 10.44 (réciproque) Soit $f: I \to J$ une bijection continue sur I. Alors, la bijection réciproque f^{-1} est continue sur J.

10.6.2 Théorèmes fondamentaux

Théorème 10.45 (continuité et intervalles) L'image d'un intervalle par une fonction continue réelle est un intervalle

Théorème 10.46 (continuité et segments) L'image d'un segment par une fonction continue réelle est un segment

Corollaire 10.47 Une fonction continue sur un segment est bornée

Corollaire 10.48 Une fonction périodique et continue sur \mathbb{R} est bornée

Théorème 10.49 (théorème des valeurs intermédiaires) Soit f une fonction continue sur un segment [a,b]. Alors $[f(a), f(b)] \subset f([a,b])$

Corollaire 10.50 Une fonction réelle continue sur [a,b] qui s'annule uniquement en a et en b est soit strictement positive sur a,b, soit strictement négative sur a,b

Propriété 10.51
$$f \rightarrow \ell \atop a+f \rightarrow \ell'$$

Propriété 10.51
$$\begin{cases} f \text{ continue sur }]a,b[\\ f \to \ell \\ f \to \ell' \end{cases} \implies]\ell,\ell'[\subset f(]a,b[)$$

Théorème 10.52 (théorème de la bijection) Soit f une application réelle, continue et strictement monotone sur un intervalle I. Alors, f est une bijection strictement monotone de I sur J = f(I). qui est un intervalle. La bijection réciproque f^{-1} est continue sur J et a le même sens de variation

Théorème 10.53 (caractérisation) Soit f une application réelle définie sur un intervalle I. Alors,

$$\begin{cases} f \text{ continue sur } I \\ f \text{ monotone stricte sur } I \end{cases} \Longleftrightarrow \begin{cases} f \text{ continue sur } I \\ f \text{ bijective sur } I \end{cases} \Longleftrightarrow \begin{cases} f \text{ bijective sur } I \\ f \text{ monotone stricte sur } I \end{cases}$$

10.6.3 Continuité par morceaux

Séquence 17

Définition 10.54 Une subdivision d'un segment [a,b] est une suite strictement croissante finie $\sigma =$ $\{x_0, x_1, \dots, x_n\}$ telle que $x_0 = a$ et $x_n = b$. Autrement dit, on a

$$a = \underbrace{x_0 < x_1 < \dots < x_{n-1} < x_n}_{\text{subdivision } \sigma} = b.$$

Définition 10.55 Etant donné un segment [a,b], on dit qu'une fonction $f:[a,b] \to \mathbb{R}$ est continue par morceaux sur [a,b] s'il existe une subdivision $\sigma = \{x_0, \dots, x_n\}$ du segment [a,b] telle que, pour $1 \le i \le n$, la restriction à l'intervalle $|x_{i-1}, x_i|$ de f soit prolongeable en une fonction continue sur le segment $[x_{i-1},x_i]$.

Propriété 10.56 Une fonction $f:[a,b] \to \mathbb{R}$ est continue par morceaux sur [a,b] ssi il existe une subdivision $\sigma = \{x_0, \dots, x_n\}$ du segment [a,b] telle que

$$\begin{cases} f \text{ est continue sur }]x_{i-1}, x_i[\\ f \text{ admet une limite finie à droite en } x_{i-1} \\ f \text{ admet une limite finie à gauche en } x_i \end{cases} (1 \leqslant i \leqslant n)$$

Méthode 10.57 (pour prouver qu'une fonction $f:[a,b]\to\mathbb{R}$ est continue par morceaux)

- 1. Déterminer une subdivision $\sigma = \{x_0, \dots, x_n\}$ adaptée à f (les morceaux)
- 2. Fixer $i \in [1,n]$ et se restreindre à l'étude de f sur l'intervalle ouvert $|x_{i-1},x_i|$ (en général, on dispose d'une formule pour f sur cet intervalle)
 - a. Prouver que f est continue sur $|x_{i-1},x_i|$
 - b. Prouver que f admet une limite finie à droite en x_{i-1} (il n'est pas nécéssaire de la calculer)
 - c. Prouver que f admet une limite finie à gauche en x_i (il n'est pas nécéssaire de la calculer)

Propriété 10.58 Une fonction continue sur un segment est continue par morceaux sur ce segment

Propriété 10.59 L'ensemble des fonctions continue par morceaux sur le segment [a,b] est stable par addition, par multiplication externe et par produit. En particulier, c'est un SEV de $\mathcal{C}([a,b],\mathbb{R})$.

10.7 Fonctions dérivées

Séquence 12

10.7.1 Généralités

Dans cette section, D désigne un ensemble non vide inclus dans l'ensemble de définition d'une fonction f à valeurs dans \mathbb{R}

Définition 10.60 (dérivabilité globale) f dérivable sur D ssi f dérivable en chaque point $x \in D$

Définition 10.61 (fonction dérivée) La fonction dérivée de f est la fonction $f': x \mapsto f'(x)$

Propriété 10.62 (ensemble de dérivabilité) $\mathcal{D}f' = \{x : f \text{ dérivable en } x\} = \{x : f'(x) \text{ existe}\}\$

Propriété 10.63 $\mathcal{D}f' \subset \mathcal{D}f$

Définition 10.64 (fonctions de classe C^1) $C^1(I,\mathbb{R}) := \{f : I \to \mathbb{R} \text{ dérivable sur } I : f' \in C^0(I)\}$

Propriété 10.65 $C^1(I,\mathbb{R}) := \{f : I \to \mathbb{R} \text{ dérivable sur } I : f \text{ et } f' \text{ continues sur } I\}$

Propriété 10.66 $C^1(I,\mathbb{R})$ est un \mathbb{R} -SEV de $C(I,\mathbb{R})$

10.7.2 Opérations

Dans cette section, f et g désignent des fonctions dérivables sur le même intervalle $I \neq \emptyset$ et $\lambda \in \mathbb{R}$. Par ailleurs, les opérations décrites sont également valables si l'on remplace « dérivable » par « de classe \mathcal{C}^1 » dans toute la section

Propriété 10.67 (somme) f + g est dérivable sur I

Propriété 10.68 (multiple) $\lambda \cdot f$ est dérivable sur I

Propriété 10.69 (produit) $f \times g$ est dérivable sur I

Propriété 10.70 (quotient) Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux applications dérivables sur I telles que $g(x) \neq 0$ $(x \in I)$, alors, le quotient $\frac{f}{g}$ est dérivable sur I

<u>Théorème</u> 10.71 (composée) Soient deux applications $f: I \to \mathbb{R}$ dérivable sur $I, g: J \to \mathbb{R}$ dérivable sur J telles que $f(I) \subset J$. Alors, la composée $g \circ f$ est dérivable sur I

<u>Théorème</u> 10.72 (bijection réciproque) Soit f une bijection de I dans J, dérivable sur I telle que $f'(x) \neq 0$ $(x \in I)$. Alors, la bijection réciproque f^{-1} est dérivable sur J.

10.7.3 Monotonie

Dans cette section, $f: I \to \mathbb{R}$ désigne une fonction dérivable sur I, intervalle contenant au moins deux points.

<u>Théorème</u> 10.73 (fonctions constantes) f constante sur $I \iff f'(x) = 0$ $(x \in I)$

Propriété 10.74 (monotonie) f croissante sur $I \iff f'(x) \geqslant 0 \quad (x \in I)$ f décroissante sur $I \iff f'(x) \leqslant 0 \quad (x \in I)$

Propriété 10.75 (stricte monotonie) f'(x) > 0 $(x \in I) \implies f$ croissante stricte sur I f'(x) < 0 $(x \in I) \implies f$ décroissante stricte sur I

<u>Théorème</u> 10.76 (stricte monotonie) Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I, contenant au moins deux points, dont la dérivée s'annule au plus en un nombre fini de points. Alors,

$$f'(x) \geqslant 0$$
 $(x \in I) \implies f$ croissante stricte sur I $f'(x) \leqslant 0$ $(x \in I) \implies f$ décroissante stricte sur I

10.7.4 Théorèmes fondamentaux

Dans cette section, a < b et $f: [a,b] \to \mathbb{R}$ désigne une fonction continue sur [a,b] et dérivable sur]a,b[.

Théorème 10.77 (théorème de Rolle) $f(a) = f(b) \Longrightarrow (\exists c \in]a,b[:f'(c) = 0)$

Théorème 10.78 (égalité des accroissements finis) $\exists c \in]a,b[:f(b)-f(a)=f'(c)(b-a)$

Théorème 10.79 (inégalités des accroissements finis)

$$m \leqslant f'(x) \leqslant M \quad (a < x < b) \implies m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$$

Théorème 10.80 (inégalités des accroissements finis)

$$|f'(x)| \leqslant M \quad (a < x < b) \implies |f(b) - f(a)| \leqslant M|b - a|$$

<u>Théorème</u> 10.81 (prolongement C^1) Soit I un intervalle contenant au moins 2 points, dont a, et f une fonction continue sur I, de classe C^1 sur $I \setminus \{a\}$ telle que f' admet une limite finie en a. Alors, l'application f est de classe C^1 sur I.

10.7.5 Fonctions de classe C^n

Séquence 27

Dans cette section, $n\geqslant 2$ désigne un nombre entier et f désigne une fonction définie sur un intervalle I contenant au moins 2 points

<u>Définition</u> 10.83 (dérivée $n^{\text{ième}}$) La dérivée $n^{\text{ième}}$ d'une application f dérivable n fois sur I est l'application $f^{(n)}: I \to \mathbb{R}$ définie par $f^{(n)}(x) := (f')^{(n-1)}(x)$ $(x \in I)$

Convention 10.84 La derivée d'ordre 0 de f est l'application $f^{(0)} = f$

<u>Définition</u> 10.85 (fonction indéfiniment dérivable) f indéfiniment dérivable sur ssi f est dérivable n fois pour $n \in \mathbb{N}$

Propriété 10.86 Les fonctions constantes et identité $x \mapsto x$ sont de class C^{∞} sur \mathbb{R}

Pour la suite de cette section, $n \geqslant 1$ et f désigne une fonction n fois dérivable sur un intervalle I contenant au moins 2 points

Propriété 10.87 (dérivations successives) $f^{(n)} = (f^{(p)})^{(n-p)}(x)$ $(0 \leqslant p \leqslant n)$

Définition 10.88 (espace C^n) $C^n(I,\mathbb{R}) := \{f : I \to \mathbb{R} \text{ dérivable} : f' \in C^{n-1}(I,\mathbb{R})\}$ $(n \in \mathbb{N}^*)$

Propriété 10.89 $\mathcal{C}^n(I,\mathbb{R})$ forme un \mathbb{R} -sous-espace vectoriel de $\mathcal{C}(I,\mathbb{R})$ pour $n \in \mathbb{N}$

Propriété 10.90 $f \in \mathcal{C}^n(I,\mathbb{R}) \Longleftrightarrow f$ dérivable n fois sur I et $\left\{ \begin{array}{c} f \text{ continue sur } I \\ \vdots \\ f^{(n-1)} \text{ continue sur } I \end{array} \right.$

Propriété 10.91 $C^{n+1}(I,\mathbb{R}) \subset C^n(I,\mathbb{R})$ $(n \in \mathbb{N})$

Définition 10.92 (espace \mathcal{C}^{∞}) $\mathcal{C}^{\infty}(I,\mathbb{R}) = \{f : I \to \mathbb{R} \text{ indéfiniment dérivable}\}$

Propriété 10.93 $\mathcal{C}^{\infty}(I,\mathbb{R}) = \{f: I \to \mathbb{R}: \forall n \in \mathbb{N}, f \in \mathcal{C}^n(I,\mathbb{R})\}$

Propriété 10.94 $\mathcal{C}^{\infty}(I,\mathbb{R})$ forme un \mathbb{R} -sous espace vectoriel de $\mathcal{C}(I,\mathbb{R})$

10.7.6 Opérations sur les fonctions de classe C^n

Séquence 27

Dans cette section, $\lambda \in \mathbb{R}$ et f et g sont des fonctions dérivables n fois sur le même intervalle $I \neq \emptyset$. Par ailleurs, les propriétés décrites sont également valables si l'on remplace « dérivable n fois » par « de classe \mathbb{C}^n » et « indéfiniment dérivables » par « de classe \mathbb{C}^∞ » dans toute la section

Propriété 10.95 Les sommes, les multiples et les produits de fonctions dérivables n fois sur I sont dérivables n fois sur I

Corollaire 10.96 Les fonctions polynômes sont indéfiniment dérivables sur R.

Propriété 10.97 (somme) $(f+g)^{(n)}(x) = f^{(n)}(x) + g^{(n)}(x)$ $(x \in I)$

Propriété 10.98 (multiple) $(\lambda \cdot f)^{(n)}(x) = \lambda \cdot f^{(n)}(x)$ $(x \in I)$

<u>Propriété</u> 10.100 (quotient) Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ des applications dérivables n fois sur I telles que $g(x) \neq 0$ $(x \in I)$. Alors, le quotient $\frac{f}{g}$ est dérivable n fois sur I

<u>Théorème</u> 10.101 (composée) Soient deux applications $f: I \to \mathbb{R}$ dérivable n fois sur I et $g: J \to \mathbb{R}$ dérivable n fois sur J telles que $f(I) \subset J$. Alors, la composée $g \circ f$ est dérivable n fois sur I

Théorème 10.102 (bijection réciproque) Soit $f: I \to J$ une bijection n fois dérivable sur I telle que $f'(x) \neq 0$ $(x \in I)$. Alors, la bijection réciproque f^{-1} est dérivable n fois sur J.

10.8 Étude globale des fonctions d'une variable

Dans cette section, nous cherchons à étudier une fonction f qui n'est connue que par la donnée d'une formule pour f(x)

Méthode 10.103 (Algorithme classique d'étude)

- 1. Déterminer l'ensemble de définition $\mathcal{D}f$ de f
- 2. Etudier la périodicité de f pour réduire l'étude à un ensemble de longueur T bien choisi (optionnel mais réduit le travail).
- 3. Etudier la parité de f pour réduire l'étude à la partie positive d'un ensemble symétrique par rapport à 0 (optionnel mais réduit le travail)
- 4. Déterminer l'ensemble de dérivabilité $\mathcal{D}f'$ de f

- 5. Déterminer le signe de la dérivée sur l'ensemble d'étude. c'est la partie technique de l'algorithme, dans les cas les plus difficiles, il n'est pas rare de devoir dresser le tableau de variation d'une autre fonction bien choisie pour y arriver
- 6. Dresser un tableau de variation de f (reporter +, et 0 dans la ligne du signe de f' et les flèches de monotonie et valeurs pour f)
- 7. Compléter le tableau de variation avec les limites (aux extrémités des flèches)
- 8. Déterminer les tangentes (dans la ligne des éléments géométriques) (optionnel mais nécéssaire pour obtenir un graphe ressemblant)
- 9. Etudier les branches infinies (branches paraboliques, asymptotes, position par rapport aux asymptotes) (optionnel, augmente légérement la précision du graphe)

10. tracer l'allure du graphe de f

10.9 Recherche d'extrema

Séquence 34, 35, et 36

10.10 Fonctions convexes

Séquence 34, 35, et 36

Définition 10.104 Soient $f: I \to \mathbb{R}$, I intervalle.

f convexe sur $I \Longleftrightarrow \forall x, y \in I, f(ax + by) \geqslant af(x) + bf(y)$

Propriété 10.105 Soit $f: I \to \mathbb{R}$ convexe.

$$\forall n \geqslant 2, \forall x_1, \dots, x_n \in I, \forall \lambda_1, \dots \lambda_n \in \mathbb{R}^+, \sum_{1 \leqslant k \leqslant n} \lambda_k = 1 \Longrightarrow f\left(\sum_{1 \leqslant k \leqslant n} \lambda_k x_k\right) \leqslant \sum_{1 \leqslant k \leqslant n} \lambda_k f(x_k).$$

Propriété 10.106 Soit $f \in C^1(I,\mathbb{R})$.

f convexe sur $I \iff f'$ croissante sur I

Propriété 10.107 Soit $f \in C^2(I,\mathbb{R})$.

f convexe sur $I \iff \forall x \in I, f'(x) \geq 0$.

11 Intégration

11.1 Primitives

Séquence 17

Dans cette section, F et f désignent des fonctions définies sur un intervalle I

<u>Définition</u> 11.1 (primitives) F est une primitive de f sur l'intervalle I ssi F est dérivable sur I et F'(x) = f(x) $(x \in I)$

Notation 11.2 Une primitive F de f sur un intervalle I se note $F(x) = \int f(t) dt$ $(x \in I)$

Propriété 11.3 (constante d'intégration) Si F et G sont deux primitives à valeurs dans $\mathbb R$ d'une fonction f sur un intervalle I, alors, il existe $c \in \mathbb R$ tel que G(x) = F(x) + c $(x \in I)$

Propriété 11.4 Une primitive sur I d'une fonction de classe \mathcal{C}^n sur I est de classe \mathcal{C}^{n+1} sur I

Théorème 11.5 (existence de primitives) Toute fonction continue sur un intervalle admet une

primitive sur cet intervalle

Propriété 11.6 (monômes)
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c \qquad (\alpha \neq -1, x > 0)$$

Propriété 11.7 (inverse)
$$\int \frac{\mathrm{d}x}{x} = \ln|x| + c$$
 $(x > 0 \text{ ou } x < 0)$

Propriété 11.8 (cosinus)
$$\int \cos(x) dx = \sin(x) + c$$
 $(x \in \mathbb{R})$

Propriété 11.9 (sinus)
$$\int \sin(x) dx = -\cos(x) + c$$
 $(x \in \mathbb{R})$

Propriété 11.10 (exponentielle)
$$\int \mathrm{e}^x \mathrm{d}x = \mathrm{e}^x + c \qquad (x \in \mathbb{R})$$

Propriété 11.11 (logarithme)
$$\int \ln(x) dx = x \ln(x) - x + c \qquad (x > 0)$$

Propriété 11.12 (à connaître)
$$\int \frac{\mathrm{d}x}{x^2+1} = \operatorname{Arctan}(x) + c$$
 $(x \in \mathbb{R})$

11.2 Intégrales sur un segment

Séquence 17 et 18

11.2.1 Intégrale des fonctions continues

Dans cette section, f désigne une application à valeurs dans \mathbb{R} , continue sur un segment [a,b]

Définition 11.13 (intégrale) L'intégrale de $a \ à \ b$ d'une fonction continue $f: [a,b] \to \mathbb{R}$ est

$$\int_{a}^{b} f(t)dt = F(b) - F(a),$$

où F désigne n'importe laquelle des primitives de f sur le segment [a,b]

<u>Théorème</u> 11.14 (primitive et intégrale) Soit f une fonction continue sur un intervalle I, contenant a. Alors, l'unique primitive de f sur I, s'annulant en a, est l'application F définie par

$$F: I \to \mathbb{R}$$

 $x \mapsto \int_a^x f(t) dt$

Par ailleurs, la fonction F est de classe C^1 sur I

Propriété 11.15 (intégrale d'une dérivée) Pour toute primitive F sur un intervalle I d'une fonction f continue sur I, on a

$$\int_{a}^{x} f(t)dt = [F]_{a}^{x} = F(x) - F(a) \qquad (x \in I).$$

En particulier, pour toute fonction f de classe C^1 sur I, on a

$$\int_{a}^{x} f'(t)dt = [f]_{a}^{x} = f(x) - f(a).$$

11.2.2 Intégrale des fonctions continues par morceaux

<u>Définition</u> 11.16 (intégrale) L'intégrale d'une fonction f continue par morceaux sur [a,b] est

$$\int_{a}^{b} f(t)dt = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(t)dt,$$

où $x_0 = a < x_1 < \cdots < x_n = b$ désigne une subdivision de [a,b] adaptée à f.

<u>Méthode</u> 11.17 (en présence d'une intégrale) Vérifier qu'elle est bien définie, c'est-à-dire qu'on intégre une fonction continue (par morceaux) sur [a,b], avant de la manipuler

11.2.3 Propriétés

Dans cette section, f et g désignent des fonctions à valeurs dans \mathbb{R} , continues par morceaux sur un segment [a,b]?

<u>Propriété</u> 11.18 (Relation de Chasles) Soit f une fonction à valeurs dans \mathbb{R} , continue par morceaux sur un segment contenant a, b et c. Alors, $\int_a^c f = \int_a^b f + \int_b^c f$.

Propriété 11.21 (croissance)
$$a \leq b$$
 et $\underbrace{f(x) \geq g(x)}_{f \geq a} (a \leq x \leq b)$ \Longrightarrow $\int_a^b f \geq \int_a^b g$

Propriété 11.22 (valeur absolue) L'application |f| est continue par morceaux sur [a,b] et

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f|$$

<u>Théorème</u> 11.23 (caractérisation) Soit $f:[a,b] \to \mathbb{R}$, une fonction continue et à valeurs positives ou nulles. Alors,

$$\underbrace{f(x) = 0 \quad (a \leqslant x \leqslant b)}_{f=0} \quad \Longleftrightarrow \quad \int_a^b f(t) dt = 0.$$

Dans cette section, I désigne un intervalle et les nombres réels a et b vérifient a < b.

Théorème 11.24 (Intégration par parties) Soient f et q des fonctions de classe C^1 sur [a,b]Alors,

$$\int_a^b f(t)g'(t)dt = [fg]_a^b - \int_a^b f'(t)g(t)dt.$$

Théorème 11.25 (changement de variables) Soient f une fonction continue (par morceaux) sur [c,d] et $\varphi:[a,b]\to[c,d]$ une fonction de classe \mathcal{C}^1 sur [a,b]. Alors,

$$\int_{a}^{b} f(\varphi(x))\varphi'(x)dx = \int_{\varphi(a)}^{\varphi(b)} f(t)dt.$$

Corollaire 11.26 (changement de variables bijectif) Soient f une fonction continue (par morceaux) sur [c,d] et $\varphi:[a,b]\to[c,d]$ une bijection de classe \mathcal{C}^1 sur [a,b]. Alors,

$$\int_{c}^{d} f(t)dt = \int_{\varphi^{-1}(c)}^{\varphi^{-1}(d)} f(\varphi(x))\varphi'(x)dx$$

11.2.4 Sommes de Riemann

Théorème 11.27 (Sommes de Riemann) Soit $f:[0,1] \to \mathbb{R}$ une fonction continue. Alors

$$\int_0^1 f(x) dx = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$

11.2.5 Formules de Taylor

Séquence 32

Dans cette section, n désigne un entier positif ou nul et f désigne une fonction réelle de classe C^{n+1} sur un intervalle I contenant a et b.

Théorème 11.28 (Formule de Taylor avec reste intégrale)

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt$$

Théorème 11.29 (Inégalité de Taylor-Lagrange)

$$\left| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \right| \leqslant \frac{|b - a|^{n+1}}{(n+1)!} \underbrace{\max_{t \in [a,b]} \left| f^{(n+1)}(t) \right|}_{M_{n+1}}$$

Méthode 11.30 Lorsque $0 \in I$, il est fréquent de prendre a = 0 et b = x. Dans ce cadre, la formule de Taylor avec reste intégral donne

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt \qquad (x \in I)$$

De même, lorsque l'intervalle I est un segment contenant 0, l'inégalité de Taylor Lagrange donne

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \right| \leqslant \frac{|x|^{n+1}}{(n+1)!} \underbrace{\max_{t \in I} |f^{(n+1)}(t)|}_{M_{n+1}} \qquad (x \in I)$$

11.3 Intégrales sur un intervalle quelconque

Séquence 28

11.3.1 Intégrale généralisée simple

dans cette section, f et q désignent des fonctions continues par morceaux sur chaque segment inclus dans un intervalle I fermé en $a \in \mathbb{R}$ et ouvert en b, qui peut être un nombre réel ou l'un des symbôles $-\infty$ ou $+\infty$.

Définition 11.31 (intégrale généralisée simple) L'intégrale suivante converge et est égale à

$$\int_{a}^{b} f = \int_{a}^{b} f(t) dt := \lim_{x \to b} \int_{a}^{x} f(t) dt$$

 $\int_a^b f = \int_a^b f(t) \mathrm{d}t := \lim_{x \to b} \int_a^x f(t) \mathrm{d}t,$ si, et seulement si, la limite existe et est finie. Dans le cas contraire, l'intégrale diverge.

Propriété 11.32 (fausse intégrale généralisée) Si f admet une limite finie en $b \in \mathbb{R}$, alors l'intégrale $\int_a^b f$ converge. Notant \tilde{f} le prolongement par continuité de f en b, on a

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} \tilde{f}(t) dt$$
continue sur le segment [a,b]

11.3.2 Intégrales des fonctions positives

Dans cette section, f et g désignent des fonctions continues et positives sur l'intervalle [a,b] ou $g \in \mathbb{R}$ et ou b est un nombre réel ou le symbôle $+\infty$.

Propriété 11.33 $\int_a^b f$ converge $\iff \exists M \ge 0, \int_a^x f(t) dt \le M$ $(a \le x < b)$ la fonction $x \mapsto \int_{-\infty}^{x} f(t) dt$ est majorée sur [a,b]

Théorème 11.34 (Intégration des inégalités) Supposons que $0 \le f(x) \le g(x)$ pour $a \le x < b$.

- Si ∫_a^b f diverge, alors ∫_a^b g diverge.
 Si ∫_a^b g converge alors ∫_a^b f converge et 0 ≤ ∫_a^b f ≤ ∫_a^b g

<u>Théorème</u> 11.35 (Intégration des o) Supposons que $f = o_b(g)$. Alors,

- Si \$\int_a^b f\$ diverge, alors \$\int_a^b g\$ diverge et \$\int_a^x f = o_b(\int_a^x g)\$ (hors programme)
 Si \$\int_a^b g\$ converge alors \$\int_a^b f\$ converge et \$\int_x^b f = o_b(\int_x^b g)\$ (hors programme)

<u>Théorème</u> 11.36 (intégration des équivalents) Supposons que $f \sim g$. Alors, $\int_a^b f$ et $\int_a^b g$ ont

- En cas de divergence, $\int_a^x f \sim \int_a^x g$ (hors programme)
- En cas de convergence, $\int_x^b f \sim \int_x^b g$ (hors programme)

11.3.3 Intégrales généralisées réelles

Dans cette section, f désigne une fonction continue sur $]a_1,a_2[\cup\cdots\cup]a_{n-1},a_n[$ ou $\bigcup_{k=1}^n]a_k,a_{k+1}[$, où

 $a = a_1 < \cdots < a_n = b$ désignent des nombres réels ou les symbôles $-\infty$ et $+\infty$

Définition 11.37 (Intégrale généralisée réelles) L'intégrale suivante converge et vaut

$$\int_{a}^{b} f = \sum_{k=1}^{n} \left(\int_{a_k}^{c_k} f + \int_{c_k}^{a_{k+1}} f \right)$$

ssi pour $1 \leqslant k \leqslant n$ et $c_k \in]a_k, a_{k+1}[$ quelconque, les intégrales $\int_{a_k}^{c_k} f$ et $\int_{c_k}^{a_{k+1}} f$ convergent.

Propriété 11.38 (relation de Chasles) $\int_{c}^{b} f$ converge $\iff \int_{a}^{b} f$ converge $(c \in I)$ Lorsque les intégrales convergent, on a $\int_{-a}^{b} f = \int_{a}^{c} f + \int_{a}^{b} f$

Propriété 11.39 (multiple) $\int_a^b \lambda f$ converge $\iff \int_a^b f$ converge $(\lambda \neq 0)$ De plus, en cas de convergence $\int_a^b \lambda f = \lambda \int_a^b f$

Propriété 11.40 (addition)

- Si $\int_a^b f$ converge et si $\int_a^b g$ diverge, alors $\int_a^b (f+g)$ diverge.
- Si $\int_a^b f$ et $\int_a^b g$ convergent, alors $\int_a^b (f+g) dt$ converge et

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$

<u>Corollaire</u> 11.41 (linéarité) Si $\int_a^b f$ et $\int_a^b g$ convergent alors $\int_{a}^{b} (\lambda f + \mu g) = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g \qquad (\lambda \in \mathbb{R}, \mu \in \mathbb{R}).$

<u>Définition</u> 11.42 (Convergence absolue) $\int_a^b f$ converge absolument ssi $\int_a^b |f|$ converge

Propriété 11.43 (Convergence absolue) Si $a \le b$ et si $\int_a^b f$ converge absolument, alors

$$\left| \int_{a}^{b} f(t) dt \right| \leqslant \int_{a}^{b} |f(t)| dt$$

11.3.4 théorème fondamentaux

En ECS, il est clairement indiqué que les techniques de calcul (intégration par parties, changement de variables non affine) doivent être pratiquées sur des intégrales sur un segment. A fortioti, pour appliquer ces techniques à une intégrale généralisée, il faudra d'abord « poser un x » et écrire que

$$\int_{a}^{b} f(t)dt := \lim_{x \to b} \int_{a}^{x} f(t)dt,$$

puis appliquet les théorèmes, vus au premier semestre à l'intégrale $\int_{-\infty}^{\infty} f(t) dt$ Comme la formulation du programme officiel n'interdit pas le calcul de primitive sur un intervalle ou l'usage de la notation $[f]_{-\infty}^{+\infty}$, il pourra nous arriver d'utiliser les propriétés suivantes :

Notation 11.44 (Généralisation des crochets) Soit f une fonction définie sur l'intervalle a, b[, où a et b sont des nombres réels où les symbôles $-\infty$ ou $+\infty$. Lorsque les limites suivantes sont toutes les deux définies, on note

$$\left[f(t)\right]_a^b = \lim_{t \to b} f(t) - \lim_{t \to a} f(t)$$

Propriété 11.45 (Primitives et Intégrales) Soit F une primitive sur un intervalle [a,b] d'une fonction f continue. Alors,

$$\int_{a}^{b} f(t)dt = [F(t)]_{a}^{b}$$

 $\int_a^b f(t) \mathrm{d}t = [F(t)]_a^b\,,$ l'intégrale étant convergente $ssi\,$ le crochet admet une limite finie

11.3.5 Intégrales de référence

Comme les intégrales ci dessous peuvent se calculer facilement via une primitive, on peut éviter d'invoquer les propriétés suivantes (mais elles sont utiles comme référence pour les études de nature)

<u>Propriété</u> 11.46 (exponentielle) $\int_{0}^{+\infty} e^{-\alpha t} dt$ converge $\iff \alpha > 0$

<u>Propriété</u> 11.47 (Intégrales de Riemann en $+\infty$) $\int_{1}^{+\infty} \frac{dt}{t^{\alpha}}$ converge $\iff \alpha > 1$

Propriété 11.48 (Intégrales de Riemann en 0) $\int_0^1 \frac{dt}{t^{\alpha}}$ converge $\iff \alpha < 1$

Algèbre

Dans tout cette partie, le symbole \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Polynômes

Séquence 20

- 12.1 Forme additive
- 12.1.1 Généralités

Définition 12.1 Un polynôme (formel) à coefficients dans \mathbb{K} (de l'indeterminée X) est une suite $(a_k)_{k\in\mathbb{N}}$ de nombres de \mathbb{K} , nulle à partir d'un certain rang n, que l'on note

$$\sum_{k=0}^{\infty} a_k X^k = P = \sum_{k=0}^{n} a_k X^k$$

Notation 12.2

$$\mathbb{K}[X] := \left\{ \sum_{k=0}^{n} a_k X^k : n \geqslant 0 \text{ et } a_0, \dots, a_n \in \mathbb{K} \right\}$$

Définition 12.3 $f: \mathbb{R} \to \mathbb{C}$ est une fonction polynôme ssi il existe $N \in \mathbb{R}$ et a_0, \dots, a_N dans \mathbb{K} tels

$$f(x) = \sum_{k=0}^{N} a_k x^k \qquad (x \in \mathbb{R})$$

Propriété 12.4 La fonction polynôme associée à un polynôme $P=\sum_{k=0}^N a_k X^k$ est la fonction $f: \ \mathbb{R} \ \to \ \mathbb{C}$

$$f: \mathbb{R} \to \mathbb{C}$$

$$x \mapsto \sum_{k=0}^{N} a_k x^k$$

Propriété 12.5 Soient P et Q deux polynômes. Alors, $P = Q \iff \forall x \in \mathbb{K}, P(x) = Q(x)$

Les détails techniques subtils de la définition des polynômes formels ne sont pas à connaître. En particulier, on pourra librement les identifier aux fonctions polynomiales. Cependant, pour la suite de ce chapitre, les propriétés seront exprimés dans le formalisme des polynômes (parce que c'est plus naturel), dont le maniement est familier : on les manipule comme les expressions comportant des variables

12.1.2 Opérations algébriques

Dans cette section, P et Q désignent deux polynômes à coefficients dans \mathbb{K}

$$P = \sum_{k=0}^{\infty} a_k X^k \quad \text{ et } \quad Q = \sum_{k=0}^{\infty} b_k X^k$$

Définition 12.6 (somme)
$$\sum_{k=0}^{\infty} a_k X^k + \sum_{k=0}^{\infty} b_k X^k := \sum_{k=0}^{\infty} \underbrace{(a_k + b_k)}_{C_k} X^k$$

$$\textbf{D\'efinition 12.7 (multiple)} \quad \lambda \cdot \sum_{k=0}^{\infty} a_k X^k := \sum_{k=0}^{\infty} \underbrace{(\lambda a_k)}_{G_k} X^k \qquad (\lambda \in \mathbb{K})$$

Propriété 12.8 $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel

$$\underline{\textbf{D\'efinition}} \ \ \textbf{12.9 (produit)} \ \ \left(\sum_{m=0}^{\infty} a_m X^m\right) \times \sum_{n=0}^{\infty} b_n X^n := \sum_{k=0}^{\infty} \underbrace{\left(\sum_{m+n=k} a_m \times b_n\right)}_{\text{Ch.}} X^k$$

Propriété 12.10 On calcule avec les polynômes comme avec les nombres réels

12.1.3 Dérivation

$$\underline{\textbf{D\'efinition}} \quad \textbf{12.13 (d\'erivation)} \quad \left(\sum_{k=0}^{\infty} a_k X^k\right)' := \sum_{k=1}^{\infty} k a_k X^{k-1} = \sum_{k=0}^{\infty} (k+1) a_{k+1} X^k$$

Propriété 12.14 (somme) (P+Q)' = P' + Q'

Propriété 12.15 (multiple) $(\lambda \cdot P)' = \lambda \cdot P'$

Propriété 12.16 (produit) $(P \times Q)' = P' \times Q + P \times Q'$

Théorème 12.17 (formule de Leibniz)
$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}$$
 $(n \in \mathbb{N})$

12.1.4 Substitution

Définition 12.18
$$Q(P) = Q \circ P = \sum_{k=0}^{\infty} a_k P^k$$
 $(P \text{ et } Q = \sum_{k=0}^{\infty} a_k X^k \text{ dans } \mathbb{K}[X])$

Propriété 12.19 Q(X) = Q $(Q \in \mathbb{K}[X])$

$$\underline{\textbf{Th\'eor\`eme}} \ \ \textbf{12.20} \ \ \textbf{(formule de Taylor)} \quad P(X+a) = \sum_{k=0}^{\infty} P^{(k)}(a) \frac{X^k}{k!} \qquad (P \in \mathbb{K}[X], a \in \mathbb{K})$$

$$\textbf{Th\'eor\`eme 12.21 (formule de Taylor \dagger)} \quad P(X+a) = \sum_{k=0}^{\infty} P^{(k)}(X) \frac{a^k}{k!} \qquad (P \in \mathbb{K}[X], a \in \mathbb{K})$$

12.1.5 Degré

$$\textbf{D\'efinition 12.22 (degr\'e)} \quad \deg\left(\underbrace{\sum_{k=0}^{\infty}a_kX^k}_{P}\right) = \max\{k: a_k \neq 0\} \qquad (\underbrace{P \neq 0})$$

Convention 12.23 $deg(0) = -\infty$

Propriété 12.24 deg(c) = 0 $(c \in \mathbb{K}^*)$

Propriété 12.25
$$\sum_{k=0}^{\infty} a_k X^k = P = \sum_{k=0}^{\deg(P)} a_k X^k$$
 $(P \neq 0)$

Définition 12.26
$$P = \sum_{k=0}^{n} a_k X^k$$
 unitaire $\iff \begin{cases} P \neq 0 \\ a_{\deg(P)} = 1 \end{cases}$

Propriété 12.27 (somme)
$$\deg(P+Q) = \max \{ \deg(P), \deg(Q) \}$$
 si $\deg(P) \neq \deg(Q)$ $\leqslant \max \{ \deg(P), \deg(Q) \}$ sinon

Propriété 12.28 (multiple) $deg(\lambda P) = deg(P)$ $(P \neq 0, \lambda \in \mathbb{K}^*)$

Propriété 12.29 (produit) $deg(P \times Q) = deg(P) + deg(Q)$ $(P \neq 0, Q \neq 0)$

<u>Propriété</u> 12.30 (dérivée) deg(P') = deg(P) - 1 si $deg(P) \ge 1$ = $-\infty$ sinon

<u>Définition</u> 12.31 $\mathbb{K}_n[X] := \{ P \in \mathbb{K}[X] : \deg(P) \leq n \}$ $(n \in \mathbb{N})$

Propriété 12.32 $P \in \mathbb{K}_n[X] \iff \exists (a_0, \dots, a_n) \in \mathbb{K}^{n+1} : P = a_0 + a_1 X + \dots + a_n X^n \qquad (n \in \mathbb{N})$

Propriété 12.33 $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$

12.2 Forme multiplicative

12.2.1 Diviseurs

 $\underline{\textbf{D\'efinition}} \ \ \textbf{12.34 (diviseur)} \ \ Q \ \text{divise} \ P \Longleftrightarrow Q | P \Longleftrightarrow \exists R \in \mathbb{K}[X], P = Q \times R$

<u>Définition</u> 12.35 (multiple) P multiple de $Q \Longleftrightarrow Q | P \Longleftrightarrow Q$ diviseur de P

Propriété 12.36 $0|P \iff P = 0$

Propriété 12.37 $Q|P \Longrightarrow 0 \leqslant \deg(Q) \leqslant \deg(P)$ $(P \neq 0)$

Propriété 12.38 (division euclidienne) Soient deux polynômes P et $D \neq 0$. Alors, il existe deux polynômes Q et R, uniques, tels que P = QD + R et $\deg(R) < \deg(D)$

Définition 12.39 (Polynômes irreductibles) $P \neq 0$ est reductible dans \mathbb{K} ssi P admet un diviseur $D \in \mathbb{K}[X]$ de degré vérifiant $0 < \deg(D) < \deg(Q)$ Dans le cas contraire, P est dit irreductible dans \mathbb{K}

12.2.2 Racines et multiplicités

Dans cette section, $n \in \mathbb{N}$, $\alpha \in \mathbb{K}$ et P désigne un polynôme de $\mathbb{K}[X]$

 $\begin{array}{c|c} \underline{\textbf{D\'efinition}} & \textbf{12.40 (racine)} & \begin{array}{c|c} \alpha \text{ racine de } P \\ \alpha \text{ z\'ero de } P \end{array} \middle| \Longleftrightarrow P(\alpha) = 0$

Définition 12.42 (multiplicité) α est une racine de P de multiplicité n ssi

$$\begin{cases} P(\alpha) = 0 \\ \vdots \\ P^{(n-1)}(\alpha) = 0 \\ P^{(n)}(\alpha) \neq 0 \end{cases}$$

Propriété 12.43 La multiplicité n de z en tant que racine d'un polynôme P est un entier de \mathbb{N} .

Si z est racine de P, $n \ge 1$ et sinon n = 0

Propriété 12.44 α racine de multiplicité n de $P \iff P = (X - \alpha)^n R$ et $R(\alpha) \neq 0$ $\iff (X - \alpha)^n | P$ et $(X - \alpha)^{n+1} \not\mid P$

Propriété 12.45 Les nombres deux à deux distincts $\alpha_1, \dots, \alpha_k$ sont des racines de P de multiplicité respective n_1, \dots, n_k ssi $(X - \alpha_1)^{n_1} \cdots (X - \alpha_k)^{n_k}$ divise P.

Théorème 12.46 (racines et degré) Un polynôme $P \neq 0$ admet au plus $\deg(P)$ racines distinctes

Corollaire 12.47 (trop de racines) Si $P \in \mathbb{K}_n[X]$ admet au moins n+1 racines, alors P=0

Théorème 12.48 (théorème de Gauss) $deg(P) \geqslant 1 \Longrightarrow \exists \alpha \in \mathbb{C} : P(\alpha) = 0$

Corollaire 12.49 P irreductible dans $\mathbb{C} \iff P \in \mathbb{C}_1[X]^*$

12.2.3 Décomposition en produit

Dans cette section, $P = \sum_{k=0}^{n} c_k X^n$ désigne un polynôme de degré $n \ge 1$ à coefficients dans \mathbb{K} , dont les racines complexes $\alpha_1, \dots \alpha_n$ admettent respectivement les multiplicité n_1, \dots, n_n .

 $\underline{\textbf{Th\'eor\`eme}} \ \ \textbf{12.50} \ \ \textbf{(d\'ecomposition sur } \mathbb{C}\textbf{)} \quad \exists (z_1, \cdots, z_n) \in \mathbb{C}^n, P = c_n \prod_{1 \leqslant k \leqslant n} (X - z_k)$

Théorème 12.51 (décomposition sur $\mathbb C$ (avec multiplicité)) $P = c_n \prod_{1 \leqslant k \leqslant p} (X - \alpha_k)^{n_k}$ Cette décomposition est unique à permutation des racines près

Propriété 12.52 $n1 + \cdots + n_p = n$

Corollaire 12.53 (nombre de racines) Un polynôme non nul admet autant de racines complexes, comptées avec multiplicité, que son degré

Propriété 12.54 (relations coefficients-racines) Les racines de $X^2 - sX + p$ sont z et z' ssi $\begin{cases} s = z + z' \\ p = zz' \end{cases}$

Décomposition des polynômes réels

Pour la suite de cette section P désigne un polynôme à coefficients réels

Propriété 12.55 (décomposition sur \mathbb{R} (avec multiplicité)) α racine de $P \iff \overline{\alpha}$ racine de P

Corollaire 12.56 Les racines complexes de P sont conjuguées. (en particulier, on peux rassembler

les racines de P qui ne sont pas réeelles par paires)

Corollaire 12.57 P irreductible dans $\mathbb{R} \iff (P \in \mathbb{R}_1[X]^* \text{ ou } P \text{ trinôme de discriminant } \Delta < 0)$

Propriété 12.58 Deux racines complexes conjuguées de P ont la même multiplicité.

Propriété 12.59 Un polynôme réel $P = \sum_{k=0}^{n} c_k X^k$ de degré $n \ge 1$ se décompose de manière unique sous la forme

$$P = c_n \prod_{\ell=1}^{p} (X - \beta_{\ell})^{n_{\ell}} \times \prod_{\ell=1}^{q} (X^2 + a_{\ell}X + b_{\ell})^{m_{\ell}}$$

où les β_1, \ldots, β_p sont des racines réelles de P et où le discriminant du trinôme réel $X^2 + a_\ell X + b_\ell$ est strictement négatif (il ne possède dont que des racines complexes irréelles conjuguées) et où

$$n = \sum_{1 \leqslant \ell \leqslant p} n_{\ell} + 2 \sum_{1 \leqslant \ell \leqslant q} m_{\ell}$$

Propriété 12.60 (racines n'ème de l'unité) $X^n-1=\prod_{k=1}^n \left(X-\mathrm{e}^{2\pi i k/n}\right) \qquad (n\geqslant 1)$

13 Systèmes linéaires

Séquence 9

13.1 Systèmes linéaires

Dans ce chapitre, m et n désignent des entiers, a_i, b_i et $a_{i,j}$ désignent des constantes de $\mathbb K$ et x_i désignent des variables qui prennent des valeurs dans $\mathbb K$

Définition 13.1 (équation linéaire) $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$

L'équation est dite « homogène » ou « sans second membre » lorsque b=0. Dans le cas contraire, elle est dite « avec second membre » .

Le système est dit « homogène » ou « sans second membre » lorsque toutes ses équations sont sans second membre. Il est dit « avec second membre » dans le cas contraire.

Définition 13.3 (système de Cramer) Un système linéaire est de Cramer ssi il a une unique solution

Définition 13.4 ($S \iff S'$) Deux systèmes sont équivalents ssi ils ont les même solutions.

13.2 Opérations élémentaires

$$\textbf{Propriété 13.5 } (L_i \leftrightarrow L_j) \quad \begin{cases} \cdots \\ L_i \\ \cdots \\ L_j \\ \cdots \end{cases} \quad \begin{cases} \cdots \\ L_j \\ \cdots \\ L_i \\ \cdots \end{cases}$$

Propriété 13.6
$$(L_i \leftarrow \lambda L_i)$$

$$\begin{cases} \dots \\ L_i \iff \begin{cases} \dots \\ \lambda L_i \\ \dots \end{cases} (\lambda \neq 0)$$

Propriété 13.7
$$(L_i \leftarrow L_i + \sum\limits_{j \neq i} \lambda_j L_j)$$
 $\begin{cases} \dots \\ L_i \iff \begin{cases} L_i + \sum\limits_{j \neq i} \lambda_j L_j \\ \dots \end{cases} \end{cases} (\lambda_j \in \mathbb{K})$

13.3 Résolution

Méthode 13.9 (Méthode de Gauss)

- 1. choisir un pivot non nul (de préférence un petit nombre entier)
- 2. Effectuer l'opération $L_i \leftarrow aL_i bL_{\text{pivot}}$ pour éliminer les variables sur la colonne du pivot
 - a. Factoriser et simplifier les lignes au besoin
 - b. Enlever les lignes 0 = 0 (dédupliquer les lignes identiques)
- c. En cas de ligne $0 \neq 0$ (ou de relations incompatibles), le système n'a pas de solution.
- 3. Recommencer en choisissant un pivot sur une autre ligne et une autre colonne
- 4. Lorsque le système est diagonal, faire passer les variables supplémentaires à droite de l'égalité

$$\begin{cases} \boxed{\mathbf{x}-y-z=1} \\ x+y+3z=7 \\ x+3y+z=7 \end{cases} \iff \begin{matrix} L_2 \longleftarrow L_2-L_1 \\ L_3 \longleftarrow L_3-L_1 \end{matrix} \begin{cases} x-y-z=1 \\ 2y+4z=6 \\ 4y+2z=6 \end{cases} \iff \begin{cases} \boxed{\mathbf{x}-y-z=1} \\ \boxed{\mathbf{y}+2z=3} \\ 2y+z=3 \end{cases} \\ \iff \begin{matrix} L_1 \longleftarrow L_1+L_2 \\ L_3 \longleftarrow L_3-2L_2 \end{cases} \begin{cases} x+z=4 \\ y+2z=3 \\ -3z=-3 \end{cases} \iff \begin{cases} \boxed{\mathbf{x}-y-z=1} \\ \boxed{\mathbf{y}+2z=3} \\ \boxed{\mathbf{y}+2z=3} \\ \boxed{\mathbf{z}=1} \end{cases} \\ \iff \begin{matrix} L_1 \longleftarrow L_1-L_3 \\ L_2 \longleftarrow L_2-2L_3 \end{cases} \begin{cases} \boxed{\mathbf{x}-y-z=1} \\ 2y+2z=3 \\ \boxed{\mathbf{y}-z=1} \end{cases} \end{cases}$$

Théorème 13.10 Un système linéaire homogène a soit la solution nulle soit une infinité de solutions

Théorème 13.11 Soit x_0 une solution particulière de S, de système homogène associé H. Alors, x solution de $S \iff x - x_0$ solution de H

Corollaire 13.12 Un système linéaire a soit aucune solution soit une unique solution soit une infinité de solutions

14 Matrices

Séquence 13

14.1 Matrices

Définition 14.1 Une matrice à p lignes et q colonnes d'éléments de \mathbb{K} est un tableau de pq nombres

 $de \mathbb{K}$

$$A = (a_{i,j})_{\substack{1 \le i \le p \\ 1 \le j \le q}} = \underbrace{\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,p} \\ a_{2,1} & a_{2,2} & \dots & a_{2,q} \\ \vdots & & & \vdots \\ a_{p,1} & a_{p,2} & \dots & a_{p,q} \end{pmatrix}}_{q \text{ colonnes}} p \text{ lignes}$$

Définition 14.2 $\mathcal{M}_{p,q}(\mathbb{K}) := \{A : \text{ matrice à } p \text{ lignes et } q \text{ colonnes d'éléments de } \mathbb{K} \}$

Notation 14.3 (matrice nulle)
$$0 = (0) \underset{1 \leqslant i \leqslant p}{\underset{1 \leqslant i \leqslant p}{\leq q}} = \underbrace{ \left(\right)}_{\text{non standard}}$$

Notation 14.4 (matrice identité)
$$I_n := \underbrace{\begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{pmatrix}}_{n \text{ colonnes}} n \text{ lignes} \quad (n \geqslant 1)$$

14.2 Opérations

Dans cette section n, p et q désignent des entiers strictement positifs et A et B désignent des matrices de $\mathcal{M}_{p,q}(\mathbb{K})$

14.2.1 Sommes

Définition 14.5
$$(a_{i,j})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant q}} + (b_{i,j})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant q}} := (a_{i,j} + b_{i,j})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant q}}$$

14.2.2 Multiples

Définition 14.6
$$\lambda \cdot (a_{i,j}) \underset{1 \leq i \leq p}{\underset{1 \leq i \leq p}{1 \leq i \leq p}} := (\lambda a_{i,j}) \underset{1 \leq i \leq p}{\underset{1 \leq i \leq p}{\underset{1 \leq j \leq q}{1 \leq i \leq p}}}$$

14.2.3 Produits

$$\underline{\textbf{D\'efinition}} \ \ \textbf{14.7} \quad \text{Soient } A \in \mathcal{M}_{p,n}(\mathbb{K}), \ B \in \mathcal{M}_{n,q}(\mathbb{K}). \ \text{Alors, } A \times B := \left(\underbrace{\sum_{\substack{1 \leq k \leq n \\ c_{i,j}}} a_{i,k}b_{k,j}}_{c_{i,j}}\right)_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}}$$

Dans la suite de cette section, les lettres A, B et C désignent des matrices dont les dimensions rendent possibles les opérations considérées.

Théorème 14.8 (associativité du produit) $(A \times B) \times C = A \times (B \times C) =: A \times B \times C$

Propriété 14.9 (bilinéarité)
$$(\lambda A + \mu B)C = \lambda AC + \mu BC$$
 $C(\lambda A + \mu B) = \lambda CA + \mu CB$ $(\lambda \in \mathbb{K}, \mu \in \mathbb{K})$

Propriété 14.10 (loi du scalaire mobile)
$$(\lambda \cdot A) \times B = A \times (\lambda \cdot B) = \lambda \cdot (A \times B)$$
 $(\lambda \in \mathbb{K})$

Propriété 14.11 (élément neutre pour
$$\times$$
) Pour $A \in \mathcal{M}_{p,q}(\mathbb{K})$, $I_p \times A = A$ et $A \times I_q = A$

14.2.4 Transposition

Dans cette section, les lettres p et q désignent des entiers strictement positifs et $A=(a_{i,j})_{\substack{1\leqslant i\leqslant p\\1\leqslant j\leqslant q}}$ désigne une matrice.

Définition 14.12 (transposition)
$${}^{t}A = {}^{t}(a_{i,j}) {}_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant q}} = (a_{j,i}) {}_{\substack{1 \leqslant i \leqslant q \\ 1 \leqslant j \leqslant p}}$$

Dans la suite de cette section, les lettres A et B désignent des matrices dont les dimensions rendent possibles les opérations considérées.

Propriété 14.13 (involution)
$${}^{t}({}^{t}A) = A$$

Propriété 14.14 (linéarité)
$${}^{t}(\lambda A + \mu B) = \lambda^{t} A + \mu^{t} B$$
 $(\lambda \in \mathbb{K}, \mu \in \mathbb{K})$

Propriété 14.15 (produit)
$${}^{t}(AB) = {}^{t}B^{t}A$$

14.2.5 Inverse

Dans cette section, A et B désignent des matrices carrées de taille n.

Définition 14.16 (inverse) B inverse de
$$A \iff A \times B = B \times A = I_n$$

Propriété 14.17 (unicité) Lorsqu'il existe, l'inverse d'une matrice A est unique et est noté A^{-1}

Définition 14.18 (inversibilité) A est inversible ssi il existe une matrice B inverse de A

Dans la suite de cette section, A et B désignent des matrices inversibles de même taille.

Propriété 14.19 (inverse du produit)
$$(A \times B)^{-1} = B^{-1} \times A^{-1}$$

$$\underline{\textbf{Propriét\'e}} \ \ \textbf{14.20} \ \ \textbf{(transpos\'ee} \ \ \textbf{de l'inverse)} \quad {}^{\text{t}}\left(A^{-1}\right) = \left({}^{\text{t}}A\right)^{-1}$$

14.2.6 Rang

Définition 14.21
$$\operatorname{rg}(A) = r \Longleftrightarrow \exists P, Q \text{ inversibles telles que } A = P \times \begin{pmatrix} I_r \\ \end{pmatrix} \times Q$$

Propriété 14.22 Soit A matrice. Alors,
$$rg(A) = rg(^tA)$$

Propriété 14.23
$$rg(A) = \begin{vmatrix} rg(A \times B) \\ rg(B \times A) \end{vmatrix}$$
 (B inversible)

Propriété 14.24 $A = 0 \iff \operatorname{rg}(A) = 0$

Propriété 14.25 (rang et inverse) A inversible \iff A carrée et $\operatorname{rg}(A) = \operatorname{taille}(A)$

Méthode 14.26 (Pour calculer le rang d'une matrice A)

- 1. choisir un pivot non nul (de préférence un petit nombre entier)
- 2. Utiliser le pivot pour eliminer les autres nombres sur la même colonne (resp. la ligne)
- 3. Utiliser le même pivot pour éliminer les autres nombres sur la même ligne (resp. la colonne)
- 4. Recommencer jusqu'à ce que tous les nombres non nuls de la matrice soient seuls sur leur ligne et leur colonne
- 5. (optionnel) Faire des échanges de lignes, de colonnes, multiplier des lignes ou des colonnes par une constante non nulle pour obtenir des 1 sur la diagonnale principale
- 6. Le rang est la quantité de nombres non nuls isolés sur leur ligne et leur colonne

$$\operatorname{rg}\begin{pmatrix} \boxed{1} & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix} \\
= \operatorname{rg}\begin{pmatrix} \boxed{1} & 2 & 3 & 4 \\ 0 & -1 & -2 & -3 \\ 0 & -2 & -4 & -6 \end{pmatrix} \qquad \begin{cases} C_2 \leftarrow C_2 - 2C_1 \\ C_3 \leftarrow C_3 - 3C_1 \\ C_4 \leftarrow C_4 - 4C_1 \end{cases} \\
= \operatorname{rg}\begin{pmatrix} \boxed{1} & 0 & 0 & 0 \\ 0 & \boxed{-1} & -2 & -3 \\ 0 & -2 & -4 & -6 \end{pmatrix} \qquad \begin{cases} L_2 \leftarrow L_2 - 2L_1 \\ L_3 \leftarrow L_3 - 3L_1 \end{cases} \\
= \operatorname{rg}\begin{pmatrix} \boxed{1} & 0 & 0 & 0 \\ 0 & \boxed{-1} & -2 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{cases} L_3 \leftarrow C_3 - 2C_2 \\ C_4 \leftarrow C_4 - 3C_2 \end{cases} \\
= \operatorname{rg}\begin{pmatrix} \boxed{1} & 0 & 0 & 0 \\ 0 & \boxed{-1} & 0 & 0 \\ 0 & \boxed{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\
= 2$$

14.3 Matrices carrées

Dans cette section, les lettres $A,\!B$ et C désignent des matrices carrées de même taille. 14.3.1 † Trace

Définition 14.27

$$\operatorname{Tr}(a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} := \sum_{1 \leqslant i \leqslant n} a_{i,i}$$

Propriété 14.28 (linéarité) $\operatorname{Tr}(\lambda A + \mu B) = \lambda \operatorname{Tr} A + \mu \operatorname{Tr} B$ $(\lambda \in \mathbb{K}, \mu \in \mathbb{K})$

Propriété 14.29 (produit) Tr(AB) = Tr(BA)

14.3.2 Matrices diagonales

$$\textbf{D\'efinition 14.30} \quad A \ \textbf{diagonale} \Longleftrightarrow A = \begin{pmatrix} \ddots & & \\ & \ddots & \\ & & \ddots \end{pmatrix} \Longleftrightarrow a_{i,j} = 0 \qquad (i \neq j)$$

Propriété 14.31 Soient $\lambda, \mu \in \mathbb{K}$, A, B diagonales.

$$\begin{pmatrix} \lambda A + \mu B \\ AB \end{pmatrix}$$
 sont diagonales

Propriété 14.32 (inverse diagonale)

$$\begin{pmatrix} \alpha & & \\ & \ddots & \\ & & \gamma \end{pmatrix} \text{ inversible } \Longleftrightarrow \begin{cases} \alpha \neq 0 & \\ \vdots & \text{et} & \begin{pmatrix} \alpha & & \\ & \ddots & \\ & & \gamma \neq 0 \end{cases}^{-1} = \begin{pmatrix} \alpha^{-1} & & \\ & \ddots & \\ & & \gamma^{-1} \end{pmatrix}$$

14.3.3 Matrices triangulaires supérieures

A triangulaire supérieure
$$\iff a_{i,j} = 0 \quad (i > j)$$

 $\iff A = \begin{pmatrix} \ddots & \vdots & \vdots & \vdots \\ & \ddots & & \vdots & \vdots \\ & & \ddots & & \vdots \end{pmatrix}$

Définition 14.33

Propriété 14.34 A triangulaire supérieure \iff ^tA triangulaire inférieure

Propriété 14.35 Soient $\lambda, \mu \in \mathbb{K}$, A, B triang. sup..

$$\begin{pmatrix} \lambda A + \mu B \\ AB \end{pmatrix}$$
 sont triang. sup.

14.3.4 Matrices symétriques

<u>Définition</u> 14.37 A symétrique \iff $^{t}A = A$

14.3.5 Matrices anti-symétriques

<u>Définition</u> 14.38 *A* anti-symétrique \iff ^tA = -A

14.3.6 Matrices qui commuttent

<u>Définition</u> 14.39 A et B commuttent $\iff AB = BA$

Propriété 14.40 (identité fondamentale) Soient $n \in \mathbb{N}$ et A et B des matrices carrées qui commuttent. Alors, $A^n - B^n = (A - B) \sum_{k+\ell = n-1} A^k B^\ell$

Propriété 14.41 (Binôme de Newton) Soient A,B matrices carrées avec AB = BA, $n \in \mathbb{N}$.

$$(A+B)^n = \sum_{k+\ell=n} \binom{n}{k} A^k B^{\ell}$$

14.4 Matrices et systèmes linéaires

Dans cette section, $X=(x_i)_{1\leqslant i\leqslant n}$ et $B=(b_i)_{1\leqslant i\leqslant n}$ désigne deux matrices colonnes de $\mathcal{M}_{n,1}(\mathbb{K})$ et $A=(a_{i,j})_{1\leqslant i\leqslant n\atop 1\leqslant i\leqslant k}$ désigne une matrice rectangulaire de $\mathcal{M}_{n,k}(\mathbb{K})$.

Propriété 14.43 (matrices et systèmes de Cramer) $AX = B \iff X = A^{-1}B$ (A inversible)

14.5 Rang d'une matrice

Dans cette section, M désigne une matrice de $\mathcal{M}_{n,p}(\mathbb{K})$

14.5.1 Généralités

<u>Définition</u> 14.44 (rang d'une matrice) $Rg(M) = Rg(C_1, \dots, C_p) = \dim Vect(C_1, \dots, C_p)$

Propriété 14.45 (inversibilité et rang) M est inversible \iff rg(M) = n $(M \in \mathcal{M}_n(\mathbb{K}))$

Propriété 14.46 Le rang d'une matrice $M \in \mathcal{M}_{n,p}(\mathbb{K})$ ne change pas si on la multiplie par une matrice carrée inversible.

Théorème 14.47 Le rang d'une matrice est égal au rang de sa transposée

Propriété 14.48 (majoration du rang) $0 \leqslant \operatorname{rg}(M) \leqslant \min(n,p)$ $(M \in \mathcal{M}_n(\mathbb{K}))$

Propriété 14.49 Une matrice, qui contient une sous-matrice de rang r, est au moins de rang r

Propriété 14.50 Une matrice $M \in \mathcal{M}_{n,p}$ est de rang r ssi il existe $P \in \mathcal{G}l_n(\mathbb{K})$ et $Q \in \mathcal{G}l_p(\mathbb{K})$ tels que $P \times M \times Q = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$

15 Espaces vectoriels

Séquence 10

15.1 Espaces vectoriels

15.1.1 Loi interne

Dans toute cette section, E désigne un ensemble non vide et * désigne une loi interne de E, c'est-à-dire

une application $f: E \times E \to E$ dont le résultat est noté x * y = f(x,y)

Définition 15.1 (loi interne) * loi interne de $E \iff x * y \in E$ $(x \in E, y \in E)$

Définition 15.2 (commutativité) * loi commutative $\iff x * y = y * x$ $(x \in E, y \in E)$

Définition 15.3 (associativité) * loi associative $\iff (x*y)*z = x*(y*z) \quad (x \in E, y \in E, z \in E)$

Définition 15.4 (élément neutre) e neutre pour $* \iff e \in E$ et x * e = x = e * x $(x \in E)$

Propriété 15.5 (unicité) Une loi interne admet au plus un élément neutre.

Définition 15.6 (inversabilité) Soit * une loi interne de E admettant un élément neutre e. Alors,

x inverse de y pour $* \iff x * y = e = y * x$

Propriété 15.7 (unicité de l'inverse) Il existe au plus un inverse d'un élément

15.1.2 Loi externe

Dans cette section, + désigne une loi interne d'un ensemble non vide E et \cdot désigne une loi externe de E selon le corps des scalaires \mathbb{K} , une application $f: \mathbb{K} \times E \to E$ dont le résultat est noté $\lambda \cdot x = f(\lambda, x)$

Définition 15.8 (loi externe) · loi externe de $E \iff \lambda \cdot x \in E$ $(\lambda \in \mathbb{K}, x \in E)$

Définition 15.9 (associativité) · loi associative $\iff (\lambda \times \mu) \cdot x = \lambda \cdot (\mu \cdot x)$ $(\lambda \in \mathbb{K}, \mu \in \mathbb{K}, x \in E)$

Définition 15.10 (distributivité)

$$\cdot \text{ distributive sur} + \Longleftrightarrow \begin{cases} (\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x & (\lambda \in \mathbb{K}, \mu \in \mathbb{K}, x \in E) \\ \lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y & (\lambda \in \mathbb{K}, x \in E, y \in E) \end{cases}$$

15.1.3 Espace vectoriel

Définition 15.11 Soient +, \cdot lois de E.

$$(E,+,\cdot) \ \mathbb{K}\text{-espace vectoriel} \Longleftrightarrow \left\{ \begin{array}{l} + \ \text{loi interne, associative, commutative,} \\ \text{admettant un \'el\'ement neutre not\'e 0,} \\ \text{tous les } x \in E \ \text{sont inversibles pour} \ + \\ \cdot \ \text{loi externe, associative, distributive sur} \ + \\ \forall x \in E, 1 \cdot x = x \end{array} \right.$$

Propriété 15.12 (espace \mathbb{K}^n) Pour $n \ge 1$, $(\mathbb{K}^n, +, \cdot)$ est un \mathbb{K} -espace vectoriel

Propriété 15.13 (espace de fonctions) Soient A un ensemble non vide et F un \mathbb{K} -espace vectoriel. Alors, L'ensemble $\mathcal{F}(A,F)$ muni des lois + et \cdot définies pour f et G dans $\mathcal{F}(A,F)$ par

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) & (x\in A) \\ (\lambda\cdot f)(x) & = & \lambda\cdot f(x) & (\lambda\in\mathbb{K},x\in A) \end{array}$$

forme un espace vectoriel sur \mathbb{K} .

Corollaire 15.14 (espace des suites) L'ensemble de fonctions $\mathcal{F}(\mathbb{R},\mathbb{R})$, muni des opérations + et · usuelles, forme un \mathbb{R} -espace vectoriel

Corollaire 15.15 (espace des suites) L'ensemble des suites $\mathbb{R}^{\mathbb{N}}$, muni des lois + et \cdot usuelles, forme un \mathbb{R} -espace vectoriel

Dans la suite de cette section $(E, +, \cdot)$ désigne un \mathbb{K} -espace vectoriel

Définition 15.16
$$x \text{ vecteur} \iff x \in E$$
 $\lambda \text{ scalaire} \iff \lambda \in \mathbb{K}$

Propriété 15.17 (multiple nul) $\lambda . x = 0 \iff \lambda = 0 \text{ ou } x = 0$

Définition 15.18
$$x$$
 combi. linéaire de $x_1, \dots, x_n \in E \iff x = \sum_{k=1}^n \lambda_k x_k$

15.2 Sous-espaces vectoriels

15.2.1 Généralités

Dans toute cette section, $(E, +, \cdot)$ désigne un \mathbb{K} -espace vectoriel

Définition 15.19 (sous-espace vectoriel)
$$F(+,.)$$
 SEV de $E \iff \begin{cases} F \subset E \\ F(+,\cdot)\mathbb{K}\text{-EV} \end{cases}$

Propriété 15.20 Si F est un sous-espace vectoriel de E, alors $0_E = 0_F$

Propriété 15.21 Soit E \mathbb{K} -espace vectoriel.

$$F \text{ SEV de } E \Longleftrightarrow \begin{cases} F \subset E \\ F \neq \emptyset \\ F \text{ stable par combi. linéaires} \end{cases}$$

$\underline{\text{M\'ethode}}$ 15.22 (Pour montrer que F est un \mathbb{K} -espace vectoriel)

- 1. Montrer que $F \subset E$, pour un \mathbb{K} -espace vectoriel de référence E
- 2. Montrer que $F \neq \emptyset$. Pour cela, il est conseillé de montrer que $0_E \in F$
- 3. Montrer que F est stable par combinaisons linéaires, c'est-à-dire

$$\forall (\lambda,\mu) \in \mathbb{K}^2, \forall (x,y) \in F^2, \lambda x + \mu y \in F$$

Propriété 15.23 (intersection)
$$\bigcap_{i \in I} F_i$$
 est un SEV de E $((F_i)_{i \in I}$ des SEV de E)

15.2.2 Espaces vectoriels engendrés

Dans cette section, $(E, +, \cdot)$ désigne un \mathbb{K} -espace vectoriel et A désigne une partie non vide de E

Définition 15.24 Vect(A) :=
$$\bigcap_{A \subset F \text{ sev de } E} F$$
 (A \subset E)

Propriété 15.25

$$\operatorname{Vect}(A) = \left\{ \sum_{k=1}^{n} \lambda_k x_k : n \geqslant 1, x_1 \in A, \dots, x_n \in A, (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \right\} \qquad (A \subset E)$$

Corollaire 15.26

$$\operatorname{Vect}(x_1, \dots x_n) = \left\{ \sum_{k=1}^n \lambda_k x_k : (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \right\} \qquad (n \geqslant 1 \text{ et } (x_1, \dots, x_n) \in E^n)$$

15.2.3 Familles de vecteurs

Dans cette section, $\mathcal{F} = (x_1, \dots, x_n)$ désigne une famille de vecteurs d'un \mathbb{K} -espace vectoriel E

<u>Définition</u> 15.27 (famille génératrice) \mathcal{F} engendre $E \iff E = \text{Vect}(\mathcal{F})$

Définition 15.28 (famille libre)
$$(x_1, \dots, x_n)$$
 libre $\iff \left(\sum_{k=1}^n \lambda_k x_k = 0 \iff \lambda_1 = \dots = \lambda_n = 0\right)$

Définition 15.30 (base) \mathcal{F} base de $E \iff \mathcal{F}$ est libre et génératrice dans E

La méthode suivante sera admise et utilisée judicieusement (avec 11 semaines d'avance)

Méthode 15.31 (ECS*) Si $\mathcal{B} = \{e_1, \dots, e_k\}$ est une base de E, alors

- \mathcal{F} est libre \iff rg $(\mathcal{M}at_{\mathcal{B}}(\mathcal{F})) = \operatorname{card}(\mathcal{F})$
- \mathcal{F} est génératrice dans $E \iff \operatorname{rg}(\mathcal{M}at_{\mathcal{B}}(\mathcal{F})) = k$

15.3 Espaces vectoriels de dimension finie

Séquence 21 et 22

15.3.1 Dimension

Dans cette section, E désigne un \mathbb{K} -espace vectoriel

<u>Définition</u> 15.32 (dim. finie) E de dimension finie \iff E contient une famille génératrice finie

Propriété 15.33 (cardinal)
$$(e_1, \dots, e_m)$$
 libre dans E f_1, \dots, f_n génératrice de E $\Longrightarrow m \leqslant n$

 $\frac{\text{Propriét\'e}}{\text{nie}}$ 15.34 (caractérisation) E de dimension infinie \iff E contient une famille libre infinie

Théorème 15.35 (base incomplète)

$$(e_1, \dots, e_m) \text{ libre} \atop (f_1, \dots, f_n) \text{ génératrice} \} \Longrightarrow \frac{\exists p \in [\![0, n]\!] \text{ et } 1 \leqslant i_1 < \dots < i_p \leqslant n :}{(e_1, \dots, e_m, f_{i_1}, \dots, g_{i_p}) \text{ base}}$$

Corollaire 15.36 Tout espace de dimension fini admet au moins une base

Pour la suite de cette section, $E \neq \{0\}$ désigne un K-espace vectoriel de dimension finie

Convention 15.37 $\dim(\{0\}) = 0$

<u>Définition</u> 15.38 $\dim_{\mathbb{K}}(E) = \operatorname{card}(\mathcal{B})$ (\mathcal{B} base de E)

En particulier, la dimension d'un espace vectoriel est indépendante de la base choisie pour la calculer

Théorème 15.39
$$\dim_{\mathbb{K}}(E) = \max\{\operatorname{card}(\mathcal{F}) : \mathcal{F} \subset E \text{ et libre}\}\$$

= $\min\{\operatorname{card}(\mathcal{F}) : \mathcal{F} \text{ engendre } E\}$

Propriété 15.40 (caractérisation) Soit E un espace vectoriel de dimension n. Alors,

$$(e_1, \dots, e_n)$$
 libre \iff (e_1, \dots, e_n) génératrice \iff (e_1, \dots, e_n) base

Propriété 15.41 Soit F un sous-espace vectoriel d'un espace vectoriel E de dimension finie. Alors F est de dimension finie et $\dim_{\mathbb{K}}(F) \leqslant \dim_{\mathbb{K}}(E)$

Propriété 15.42 Soit F un sous-espace vectoriel d'un espace vectoriel E de dimension finie. Alors, $F = E \Longleftrightarrow \dim_{\mathbb{K}}(F) = \dim_{\mathbb{K}}(E)$

15.3.2 Bases canoniques et dimensions de référence

Propriété 15.43 Si E est un \mathbb{C} -espace vectoriel de base $\{e_1, \dots, e_n\}$ alors, E est également un \mathbb{R} -espace vectoriel de base $\{e_1, ie_1, e_2, ie_2, \dots, e_n, ie_n\}$. En particulier $\dim_{\mathbb{C}}(E) = 2 \dim_{\mathbb{C}}(E)$

Propriété 15.44 (espace des n-uplets) $\dim_{\mathbb{K}}(\mathbb{K}^n) = n$

 $\overline{\text{La base canonique de }\mathbb{K}^n} \text{ est la famille } \{e_1,\cdots,e_n\} \text{ définie par } e_k = (0,\cdots,0,\underset{k}{1},0,\cdots,0) \qquad (1\leqslant k\leqslant n)$

Théorème 15.45 (\mathbb{R} -espace des n-uplets complexes) $\dim_{\mathbb{R}}(\mathbb{C}) = 2n$

La base canonique de \mathbb{C}^n , en tant que \mathbb{R} -espace vectoriel, est la famille $\{e_1, f_1, \dots, e_n, f_n\}$ définie par

$$\begin{array}{ll} e_k = (0, \cdots, 0, & 1 & , 0, \cdots, 0) \\ f_k = (0, \cdots, 0, & i & , 0, \cdots, 0) \\ & & k^{\text{i\`eme}} \text{ position} \end{array} \quad (1 \leqslant k \leqslant n)$$

Propriété 15.46 $\mathbb{K}[X]$ un \mathbb{K} -espace vectoriel de dimension infinie

Propriété 15.47 (espace de polynômes) $\dim_{\mathbb{K}} \mathbb{K}_n[X] = n+1$

La base canonique de $\mathbb{K}[X]$ est la famille de polynômes (X^0, X^1, \dots, X^n)

Propriété 15.48 (espace des matrices) $\dim_{\mathbb{K}} \mathcal{M}_{p,q}(\mathbb{K}) = pq$

Une base de $\mathcal{M}_{p,q}(\mathbb{K})$ est la famille $(E_{i,j})$ définie pour $1 \leqslant i \leqslant p$ et $1 \leqslant j \leqslant q$, où $E_{i,j}$ désigne la matrice dont tous les coefficients sont nuls saut celui sur la $i^{\text{ième}}$ ligne et la $j^{\text{ième}}$ colonne, qui vaut 1.

Propriété 15.49 (espaces de fonctions) Les espaces vectoriels $\mathcal{F}(I,\mathbb{K})$, $\mathcal{C}^n(I,\mathbb{R})$ et $\mathcal{C}^{\infty}(I,\mathbb{R})$ sont de dimension infinie pour $n \in \mathbb{N}$ et I intervalle contenant au moins deux points.

Propriété 15.50 (espace des suites) $\mathbb{R}^{\mathbb{N}}$ est un espace vectoriel de dimension infinie

15.3.3 Rang d'une famille de vecteurs

Dans cette section, \mathcal{F} désigne une famille de vecteurs d'un espace vectoriel E de base $\mathcal{B} = (e_1, \dots, e_n)$ (E est de dimension finie) et x désigne un vecteur de E.

Définition 15.51 (rang d'une famille de vecteurs) $rg(\mathcal{F}) = \dim Vect(\mathcal{F})$

$$\underline{\textbf{D\'efinition}} \ \ \textbf{15.52} \ \ \textbf{(matrice des coordonn\'ees)} \ \ \mathcal{M}at_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \Longleftrightarrow x = x_1e_1 + \cdots + x_ne_n$$

Propriété 15.53 Soient X_1, \dots, X_n les matrices des vecteurs x_1, \dots, x_n dans la base \mathcal{B} . Alors, $\operatorname{rg}(x_1, \dots, x_n) = \operatorname{rg}(X_1, \dots, X_n) = \dim \operatorname{Vect}(X_1, \dots, X_n)$

Propriété 15.54 \mathcal{F} famille génératrice de $E \iff \operatorname{rg}(\mathcal{F}) = \dim(E)$

Propriété 15.55 \mathcal{F} famille libre dans $E \iff \operatorname{rg}(\mathcal{F}) = \operatorname{card}(\mathcal{F})$

15.4 Produits cartésiens, sommes et supplémentaires Séquence 20 et 21

15.4.1 Produit cartésien

Propriété 15.56 Si E et F sont des \mathbb{K} -espaces vectoriels, alors $E \times F$ l'est également pour les opérations définies par

$$(x,y) + (x',y') = (x+x',y+y')$$
 pour (x,y) et (x',y') dans $E \times F$
 $\lambda.(x,y) = (\lambda.x,\lambda.y)$ pour $\lambda \in \mathbb{K}$ et (x,y) dans $E \times F$

Propriété 15.57 Si E et F sont de dimensions finies, $E \times F$ l'est aussi et $\dim_{\mathbb{K}}(E \times F) = \dim_{\mathbb{K}}(E) + \dim_{\mathbb{K}}(F)$

Si e_1, \dots, e_n est une base de E et f_1, \dots, f_k est une base de F, alors $(e_1, 0), \dots, (e_n, 0), (0, f_1), \dots, (0, f_k)$ est une base de $E \times F$.

15.4.2 Sommes et supplémentaires

<u>Définition</u> 15.58 La somme de n sous-espaces vectoriels $E_1, \dots E_n$ d'un \mathbb{K} -espace vectoriel E est l'espace vectoriel

$$E_1 + \dots + E_n = \{x_1 + \dots + x_n : x_1 \in E_1, \dots, x_n \in E_n\}$$

<u>Définition</u> 15.59 (somme directe) La somme $E_1 + \cdots + E_n$ est directe et notée $E_1 \oplus \cdots \oplus E_n$ ssi

$$x_1 + \dots + x_n = 0 \implies x_1 = \dots = x_n = 0 \quad (x_1 \in E_1, \dots x_n \in E_n)$$

Propriété 15.60 (dimension) Soient E_1, \dots, E_n sont des sous-espaces de dimension finie de E, qui sont en somme directe. Alors, $\dim(E_1 \oplus \dots \oplus E_n) = \dim(E_1) + \dots + \dim(E_n)$

Propriété 15.61 (Somme de 2 espaces) Si F et G sont deux sous-espaces vectoriels de E, alors

$$F + G = \{x + y : x \in F, y \in G\}$$

$$F \oplus G \iff F \cap G = \{0\}$$

Propriété 15.62 (Dimension de la somme de deux espaces) Si F et G sont deux sous-espaces vectoriels de dimension finie de E, alors

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

$$\dim(F \oplus G) = \dim(F) + \dim(G)$$

Propriété 15.63 (Supplémentaire) Soient F et G des sous-espaces de E. Alors

$$F$$
 et G sont supplémentaires dans E \iff $E = F \oplus G$ \iff $\begin{cases} E = F + G \\ F \oplus G \end{cases}$

Propriété 15.64 (Supplémentaire en dimension finie) Tout sous-espace F d'un espace E de dimension finie admet un supplémentaire G dans E et $\dim_{\mathbb{K}}(G) = \dim_{\mathbb{K}}(E) - \dim_{\mathbb{K}}(F)$

Propriété 15.65 (Sommes directes et bases) Soient E_1, \dots, E_n des sous-espaces vectoriels de \overline{E} munis de bases (finies) $\mathcal{B}_1, \dots, \mathcal{B}_n$. Alors

$$E_1 \oplus \cdots \oplus E_n \iff (\mathcal{B}_1, \cdots, \mathcal{B}_n)$$
 est une base de $E_1 + \cdots + E_n$

15.5 Applications linéaires

Séquence 16 et 26

A la séquence 16, on pourra utiliser (avec 10 semaines d'avance) les outils de cette section en remplaçant éventuellement la phrase « de dimension finie n » par « admettant une base de n vecteurs ». Cela sera détaillé plus explicitement en cours.

Dans cette section E, F et G désignent des \mathbb{K} -espaces vectoriels.

15.5.1 Applications linéaires

Dans cette section, E et F désignent deux \mathbb{K} -espaces vectoriels et $f: E \to F$ est une application

Définition 15.66 (linéarité) flinéaire
$$\iff f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$
 $(\lambda, \mu \in \mathbb{K}, x, y \in E)$

Méthode 15.67 (Pour prouver que $f: E \to F$ est une application linéaire)

- 1. S'assurer que E et F sont bien des espaces vectoriels
- 2. Vérifier que $f: E \to F$ est une application : pour $x \in E$, montrer que f(x) existe et appartient à F
- 3. Etablir la linéarité de f: pour λ et μ dans \mathbb{K} et x et y dans E, vérifier que

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

<u>Définition</u> 15.68 (morphisme) f morphisme \iff f application linéaire

Définition 15.69 (endomorphisme) f endomorphisme $\iff E = F$ et f application linéaire

Définition 15.70 (isomorphisme) f isomorphisme \iff f application linéaire bijective

<u>Définition</u> 15.71 (automorphisme) f automorphisme $\iff E = F$ et f linéaire et bijective

Notation 15.72 (espace des applications linéaires) $\mathcal{L}(E,F) = \{f : E \to F \text{ application linéaire}\}$

<u>Notation</u> 15.73 (espace des endomorphismes de E) $\mathcal{L}(E) = \{f : E \to E \text{ application linéaire}\}\$

Propriété 15.74 (espace vectoriel) $(\mathcal{L}(E,F),+,\cdot)$ est un sous-espace vectoriel de $\mathcal{F}(E,F)$ sur \mathbb{K}

Définition 15.76 (endomorphismes qui commuttent) Soient u et v deux endomorphismes de E. Alors, u et v commuttent $\iff u \circ v = v \circ u$

<u>Propriété</u> 15.77 (bijection réciproque) f linéaire et bijective $\Longrightarrow f^{-1}$ linéaire et bijective

Notation 15.78 (automorphismes de E) $\mathcal{A}ut(E) = \mathcal{G}l(E) = \{f \in \mathcal{L}(E) \text{ bijective}\}$ $(E \mathbb{K}\text{-EV})$

Propriété 15.79 On calcule dans $(\mathcal{L}(E), +, \cdot, \circ)$ comme dans $\mathcal{M}_n(\mathbb{K}), +, \cdot, \times)$, c'est à dire un peu comme avec les nombres rééls en se rappelant que la composition n'est pas commutative

Convention 15.80 $u^0 = \operatorname{Id}_E$ $(u \in \mathcal{L}(E))$

 $\textbf{Notation 15.81 (puissances)} \quad u^n = \underbrace{u \circ \cdots \circ u}_{n \text{ fois}} \quad (u \in \mathcal{L}(E), n \geqslant 1)$

 $\textbf{Notation 15.82 (puissances négatives)} \quad u^{-n} := \underbrace{u^{-1} \circ \cdots \circ u^{-1}}_{n \text{ fois}} \qquad (u \in \mathcal{G}l(E), n \geqslant 1)$

<u>Théorème</u> 15.83 (identité algébrique) Soient u et v deux endomorphismes de E qui commutent. Alors,

$$u^{n} - v^{n} = (u - v) \sum_{k=0}^{n-1} u^{k} \circ v^{n-1-k} \qquad (n \in \mathbb{N})$$

<u>Théorème</u> 15.84 (binôme de Newton) Soient u et v deux endomorphismes de E qui commuttent. Alors,

$$(u+v)^n = \sum_{k=0}^n \binom{n}{k} u^k \circ v^{n-k} \qquad (n \in \mathbb{N})$$

15.5.2 Noyau et image

Dans cette section, E et F désignent des \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire.

Propriété 15.85 (image réciproque) $f^{-1}(H)$ est un SEV de E (H SEV de F)

<u>Définition</u> 15.86 (noyau) $Ker(f) := \{x \in E : f(x) = 0\}$

Propriété 15.87 Le noyau d'un morphisme $f: E \to F$ est un sous-espace vectoriel de E

Propriété 15.88 (injectivité) f injective $\iff \text{Ker}(f) = \{0\}$

Méthode 15.89 (Pour étudier si une application linéaire est injective) Calculer son noyau

Propriété 15.90 (Image directe) f(H) est un SEV de F (H SEV de E)

<u>Définition</u> 15.91 (image) $Im(f) := \{f(x) : x \in E\} = f(E)$

Propriété 15.92 f surjective \iff Im(f) = F $(f: E \to F \text{ linéaire})$

Propriété 15.93 (équation affine)
$$\{x \in E : u(x) = b\} = \emptyset$$
 si $b \notin Im(u)$ $(b \in F)$ $= x_0 + Ker(u)$ si $b = u(x_0)$

15.5.3 Homothétie, projections, symétries.

Dans cette section, f désigne un endomorphisme d'un $\mathbb{K}\text{-espace}$ vectoriel E Homothéties

Définition 15.94 (homothétie) f est une homothétie de rapport $\lambda \iff h = \lambda \operatorname{Id}_F$ $(\lambda \in \mathbb{K})$

Propriété 15.95 Une homothétie de rapport $\lambda \neq 0$ est un automorphisme de E, de bijection réciproque l'homothétie de rapport inverse $\lambda^{-1} \mathrm{Id}_E$

Propriété 15.96 Les homothéties commuttent avec tous les endomorphismes de E

Projections

Dans cette section, p désigne un endomorphisme d'un \mathbb{K} espace vectoriel $E = F \oplus H$.

Propriété 15.98 Soit p un projecteur sur F parallèlement à H. Alors, $\begin{cases} F = \operatorname{Im}(p) = \operatorname{Ker}(p - \operatorname{Id}_E) \\ G = \operatorname{Ker}(p) \end{cases}$

Propriété 15.99 (caractérisation) p projecteur $\iff p^2 = p$

Symétries

Dans cette section, s désigne un endomorphisme d'un \mathbb{K} espace vectoriel $E = F \oplus H$.

Définition 15.100 s symétrie de F parallèlement à $G \iff \begin{cases} s(x) = x & (x \in F) \\ s(x) = -x & (x \in G) \end{cases}$

Propriété 15.101 Une symétrie s de E est un automorphisme, dont la bijection réciproque est elle-même

Propriété 15.102 Soit s une symétrie de F parallèlement à H. Alors, $\begin{cases} F = \text{Ker}(s - \text{Id}_E) \\ G = \text{Ker}(s + \text{Id}_E) \end{cases}$

Propriété 15.103 (caractérisation) s symétrie \iff $s^2 = s$

15.5.1 Rang

Dans cette section, E et F désignent des \mathbb{K} -espaces vectoriels et $u: E \to F$ une application linéaire

Définition 15.104 E et F sont isomorphes ssi il existe un isomorphisme $f: E \to F$ entre eux

Théorème 15.105 (lien avec \mathbb{K}^n) E isomorphe avec $\mathbb{K}^n \iff \dim(E) = n$

Corollaire 15.106 (isomorphisme et dimension) Deux espaces vectoriels de dimension finie sont isomorphes ssi ils ont la même dimension

Théorème 15.107 Soient E,F de dim finie. Alors, dim $\mathcal{L}(E,F) = \dim(E) \times \dim(F)$

Propriété 15.108 Si $\mathcal{E} = \{e_1, \dots, e_n\}$ et $\mathcal{F} = \{f_1, \dots, f_p\}$ sont des bases respectives de E et F, alors la famille d'applications linéaires $\{g_{i,j}\}_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ définie par

$$\forall \lambda_1, \dots, \lambda_n, \qquad g_{i,j}(\lambda_1 \mathbf{e}_1 + \dots + \lambda_n \mathbf{e}_n) := \lambda_i f_j$$

forme une base de $\mathcal{L}(E,F)$.

<u>Définition</u> 15.109 (rang) Si l'image de u est de dimension finie, rg(u) = dim(Im(u))

Théorème 15.110 (théorème du rang) Si E est de dimension finie,

$$\dim(E) = \dim(\operatorname{Ker} u) + \operatorname{rg}(u) = \dim(\operatorname{Ker} u) + \dim(\operatorname{Im} u)$$

Propriété 15.111 (caractérisation) Si E et F ont même dimension finie $n \ge 1$,

u bijective $\iff u$ injective $\iff u$ surjective $\iff \operatorname{rg}(u) = n$

Propriété 15.112 (composition) On ne change pas le rang fini d'une application linéaire en la composant à gauche ou à droite par un isomorphisme

15.5.2 Matrices

Dans cette section, x désigne un vecteur de E, un espace vectoriel de base $\mathcal{E} := \{e_1, \dots, e_p\}$, et F

désigne un espace vectoriel de base $\mathcal{F} := \{f_1, \dots, f_q\}.$

Définition 15.113 (vecteur)
$$x = \sum_{i=1}^{p} x_i e_i \iff \mathcal{M}at_{\mathcal{E}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$

Propriété 15.114 La matrice du vecteur x dans la base \mathcal{E} est unique. De plus, l'application réalisant cette association est un isomorphisme

<u>Définition</u> **15.115** (matrice d'une famille de vecteurs) Soient v_1, \dots, v_n des vecteurs de E, de matrice V_1, \dots, V_n dans \mathcal{E} . Alors, $\mathcal{M}at_{\mathcal{E}}(v_1, \dots, v_q) = \begin{pmatrix} V_1 & V_2 & \dots & V_n \end{pmatrix}$

<u>Définition</u> 15.116 (matrice d'une application linéaire) Soit $u: E \to F$ une application linéaire. Alors, $\mathcal{M}at_{\mathcal{E},\mathcal{F}}(u) = \mathcal{M}at_{\mathcal{F}}(u(e_1),\cdots,u(e_p))$

Propriété 15.117 La matrice de l'application linéaire u associée aux bases \mathcal{E} et \mathcal{F} est unique. De plus, l'application réalisant cette association est un isomorphisme

Propriété 15.118 (caractérisation des applications linéaires)

$$\forall (v_1, \dots v_n) \in F^p, \quad \exists ! u \in \mathcal{L}(E, F) : \quad u(e_i) = v_i \qquad (1 \le i \le p)$$

Propriété 15.119 (égalité) Soient u et v deux applications linéaires de $\mathcal{L}(E,F)$. Alors,

$$u = v \iff u(e_i) = v(e_i) \qquad (1 \leqslant i \leqslant p)$$

Propriété 15.120 (rang) Soit $u: E \to F$ une application linéaire. Alors, $\operatorname{rg} u = \mathcal{M}at_{\mathcal{E},\mathcal{F}}(u)$ En particulier, le rang d'une application linéaire est indépendant des bases choisies pour le calculer

Propriété 15.121 Soient $u \in \mathcal{L}(E,F)$, \mathcal{E} et \mathcal{F} bases de E et F. Soit $u:E \to F$ une application linéaire. Alors, u bijective $\iff \mathcal{M}at_{\mathcal{E}}\mathcal{F}(u)$ inversible

Propriété 15.122 (matrice d'une image) Soit $u: E \to F$ une application linéaire. Alors,

$$\mathcal{M}at_{\mathcal{F}}(u(x)) = \mathcal{M}at_{\mathcal{E},\mathcal{F}}(u) \times \mathcal{M}at_{\mathcal{E}}(x) \qquad (x \in E)$$

<u>Théorème</u> 15.123 (matrice d'une composée) Soient $u: E \to F$ et $v: F \to G$ deux application linéaires avec G base de l'espace vectoriel de dimension finie G. Alors,

$$\mathcal{M}at_{\mathcal{E},\mathcal{G}}(v \circ u) = \mathcal{M}at_{\mathcal{F},\mathcal{G}}(v) \times \mathcal{M}at_{\mathcal{E},\mathcal{F}}(u)$$

Théorème 15.124 (matrice inverse) Soit $u: E \to F$ un isomorphisme. Alors, on a

$$\mathcal{M}at_{\mathcal{F},\mathcal{E}}(u^{-1}) = \mathcal{M}at_{\mathcal{E},\mathcal{F}}(u)^{-1}.$$

<u>Définition</u> 15.125 (Matrice de passage) Soient \mathcal{B} et \mathcal{C} deux bases d'un espace vectoriel \mathcal{E} de

dimension finie. Alors, $\mathcal{M}at(\mathcal{B} \to \mathcal{C}) = \mathcal{M}at_{\mathcal{C},\mathcal{B}}(\mathrm{Id}_E)$

Propriété 15.126 Une matrice de passage est inversible

Propriété 15.127 Soient \mathcal{B} et \mathcal{C} des bases d'un même espace vectoriel de dimension finie. Alors,

$$\mathcal{M}at(\mathcal{B} \to \mathcal{C}) = \mathcal{M}at(\mathcal{C} \to \mathcal{B})^{-1}$$

Propriété 15.128 (changement de base (vecteur)) Soit \mathcal{B} et \mathcal{C} des bases d'un même espace vectoriel \mathcal{E} de dimension finie. alors,

$$\mathcal{M}at_{\mathcal{C}}(x) = \mathcal{M}at_{\mathcal{B},\mathcal{C}}(\mathrm{Id}_{E}) \times \mathcal{M}at_{\mathcal{B}}(x) \qquad (x \in E)$$

Propriété 15.129 (changement de bases (application linéaire)) Soit $u: E \to F$ un morphisme entre des espaces de dimension finie E, de bases \mathcal{E} et \mathcal{E}' , et F, de bases \mathcal{F} et \mathcal{F}' . Alors,

$$\mathcal{M}at_{\mathcal{E}',\mathcal{F}'}(u) = \mathcal{M}at_{\mathcal{F},\mathcal{F}'}(\mathrm{Id}_F) \times \mathcal{M}at_{\mathcal{E},\mathcal{F}}(u) \times \mathcal{M}at_{\mathcal{E},\mathcal{E}'}(\mathrm{Id}_E)$$

Probabilités

16 Espaces probabilisés

Séquence 7 et 8

16.1 Expériences aléatoires

Définition 16.1 Une expérience aléatoire est un processus (renouvelable) de résultat incertain

Définition 16.2 (univers) $\Omega = \{\text{résultats possibles}\}\$

16.2 Tribus

Séquence 24

 $\underline{\textbf{D\'efinition}} \ \ \textbf{16.3} \quad \mathcal{T} \ \text{tribu de } \Omega \Longleftrightarrow \mathcal{T} \subset \mathcal{P}(\Omega), \ \Omega \in \mathcal{T} \ \text{et } \mathcal{T} \ \text{stable pour } \begin{cases} \text{compl\'ementaire} \\ \text{union (d\'enombrable)} \end{cases}$

Propriété 16.4 (tribu grossière) $\{\emptyset, \Omega\}$ est une tribu de Ω

Propriété 16.5 (tribu discrète) $\mathcal{P}(\Omega)$ est une tribu de Ω

16.3 Espaces probabilisables

Dans cette section Ω désigne un ensemble non vide

Définition 16.6 (espace probabilisable) (Ω, \mathcal{T}) espace probabilisable $\iff \mathcal{T}$ tribu de Ω

Définition 16.7 Soient (Ω, \mathcal{T}) , un espace probabilisable. Alors, A événement $\iff A \in \mathcal{T}$

Définition 16.8 Ø est l'événement impossible

Définition 16.9 Ω est l'événement certain

Définition 16.10 Un événement est élémentaire, lorsqu'il contient exactement un élément de Ω .

Convention 16.11 On dit que « l'événement A implique l'événement B » lorsque $A \subset B$.

Pour la suite de cette section, les lettres majuscules representent des événements

Propriété 16.12 l'ensemble $\bar{A} = \mathcal{C}_{\Omega} A$ est l'événement contraire de A.

Propriété 16.13 l'ensemble $A \cup B$ est l'événement « A ou B ».

Propriété 16.14 l'ensemble $A \cap B$ est l'événement « A et B ».

Propriété 16.15 l'ensemble $A \setminus B$ est l'événement « A mais pas B ».

Corollaire 16.16 Le complémentaire d'un événement est un événement

Corollaire 16.17 Une réunion finie (resp. dénombrable) d'événements est un événement

Corollaire 16.18 Une intersection finie (resp. dénombrable) d'événements est un événement

Définition 16.19 (événements incompatibles) A et B incompatibles $\iff A \cap B = \emptyset$

<u>Définition</u> 16.20 (événements mutuellement incompatibles) Les évenements $(A_i)_{i \in I}$ sont mutuellement incompatibles $ssi\ A_i \cap A_j = \emptyset$ pour $i \neq j$

<u>Définition</u> 16.21 (système complet) Pour I ensemble fini $(resp.\ dénombrable)$, les événements $(E_i)_{i\in I}$ forment un système complet fini $(resp.\ dénombrable)$ ssi $\begin{cases} E_i \cap E_j = \emptyset & (i \neq j) \\ \bigcup\limits_{i\in I} E_i = \Omega \end{cases}$

16.4 Espaces probabilisés

Dans cette section, (Ω, \mathcal{T}) désigne un espace probabilisable

<u>Définition</u> **16.22 (probabilité)** Une probabilité sur un espace probabilisable (Ω, \mathcal{T}) est une application $P: \mathcal{T} \to [0,1]$ vérifiant $P(\Omega) = 1$ et

$$P\bigg(\bigcup_{i\in I}A_i\bigg)=\sum_{i\in I}P(A_i)\qquad ((A_i)_{i\in I}\text{\'ev\'enements mutuellement incompatibles } avec\ I\ d\'enombrable)$$

Définition 16.23 (Ω, \mathcal{T}, P) espace probabilisé $\iff P$ probabilité de (Ω, \mathcal{T}) , espace probabilisable

Définition 16.24 (événement quasi-certain) A quasi-certain $\iff P(A) = 1$

Définition 16.25 (événement quasi-impossible) A quasi-impossible A négligeable A négligeable

Définition 16.26 (événements équiprobables) Des événements sont équiprobables ssi ils ont

tous la même probabilité de se réaliser

Théorème 16.27 Soit $\Omega = \{\omega_1, \cdots, \omega_n\}$ un univers fini. Alors, $\exists P \text{ probabilit\'e sur } \Omega : \forall i \in \llbracket 1, n \rrbracket, P(\omega_i) = p_i \Longleftrightarrow \begin{cases} \forall i \in \llbracket 1, n \rrbracket, p_i \geqslant 0 \\ p_1 + \cdots + p_n = 1 \end{cases}$

<u>Définition</u> 16.28 (probabilité uniforme) La probabilité uniforme sur un univers fini Ω , non vide, est l'application $P: \mathcal{P}(\Omega) \to [0,1]$ définie par

$$P(A) = \frac{\operatorname{card} A}{\operatorname{card} \Omega} \quad (A \subset \Omega)$$

Propriété 16.29 (formule de Poincarré) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Propriété 16.30 (formule de Poincarré)

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - (P(A \cap B) + P(A \cap C) + P(B \cap C)) + P(A \cap B \cap C)$$

Propriété 16.31 (formule du crible)

$$P(A_1 \cup \dots \cup A_n) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} P(A_{i1} \cap \dots \cap A_{i_k}).$$

16.5 Limite monotone

Séquence 24

Dans cette section, la monotonie des suites d'événements est relative à l'inclusion

Théorème 16.32 (limite monotone)

$$P\left(\bigcup_{n\geqslant 0}A_n\right) = \lim_{n\to\infty}P(A_n) \qquad ((A_n)_{n\geqslant 0} \text{ suite croissante d'événements})$$

$$P\left(\bigcap_{n\geqslant 0}A_n\right) = \lim_{n\to\infty}P(A_n) \qquad ((A_n)_{n\geqslant 0} \text{ suite décroissante d'événements})$$

Corollaire 16.33 (limite monotone) Pour toute suite d'événements $(A_n)_{n\geqslant 0}$,

$$P\bigg(\bigcup_{n\geqslant 0}A_n\bigg)=\lim_{n\to\infty}P\bigg(\bigcup_{0\leqslant k\leqslant n}A_k\bigg)\quad\text{et}\quad P\bigg(\bigcap_{n\geqslant 0}A_n\bigg)=\lim_{n\to\infty}P\bigg(\bigcap_{0\leqslant k\leqslant n}A_k\bigg)$$

16.6 Probabilités conditionnelles

Dans toute cette section, (Ω, \mathcal{T}, P) est un espace probabilisé et les lettres majuscules désignent des événements

<u>Définition</u> 16.34 (probabilité conditionnelle) $P_E(A) = \frac{P(A \cap E)}{P(E)}$ $(P(E) \neq 0)$

Propriété 16.35 Lorsque $P(E) \neq 0$, on définit une probabilité de (Ω, \mathcal{T}) en posant

$$P_E: \mathcal{T} \to [0,1]$$

 $A \mapsto P_E(A)$

Propriété 16.36 (formule de conditionnement) $P(A \cap E) = P(E) \times P_E(A)$ $(P(E) \neq 0)$

Propriété 16.37 (formule de conditionnement successif)

$$P(A_1 \cap \dots \cap A_n) = P(A_1) \times P_{A_1}(A_2) \times \dots \times P_{A_1 \cap \dots \cap A_{n-1}}(A_n) \qquad (P(A_1 \cap \dots \cap A_{n-1}) \neq 0)$$

Propriété 16.38 (formule des probabilités totales)

$$P(A) = \sum_{i \in I} P(A \cap E_i)$$
 ((E_i) $_{i \in I}$ système complet fini (resp. dénombrable)

Propriété 16.39 (formule des probabilités totales (avec conditionnement))

$$P(A) = \sum_{i \in I} P_{E_i}(A) \times P(E_i) \qquad ((E_i)_{i \in I} \text{ système complet fini } (\textit{resp. dénombrable}) \text{ vérifiant } P(E_i) \neq 0$$

Propriété 16.40 (formule de Bayes) Soit $(E_i)_{i \in I}$ un système complet fini (resp. dénombrable) d'événements vérifiant $P(E_i) \neq 0$. Alors,

$$P_A(E_i) = \frac{P(E_i) \times P_{E_i}(A)}{\sum\limits_{k \in I} P(E_k) P_{E_k}(A)} \qquad (1 \leqslant i \leqslant n)$$

16.7 Indépendance

Définition 16.41 (indépendance) $A \perp \!\!\! \perp B \Longleftrightarrow P(A \cap B) = P(A) \times P(B)$

Propriété 16.42 (indépendance et complémentaire)

$$A \parallel B \iff \bar{A} \parallel B \iff A \parallel \bar{B} \iff \bar{A} \parallel \bar{B}$$

Propriété 16.43 (indépendance et conditionnement)

$$A \perp \!\!\!\perp B \iff P_A(B) = P(B) \qquad (P(A \neq 0) \iff P_B(A) = P(A) \qquad (P(B) \neq 0)$$

<u>Définition</u> 16.44 (indépendance mutuelle) A_1, \dots, A_n sont mutuellement indépendants ssi

$$P(A_{i_1} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \times \dots \times P(A_{i_k}) \qquad (1 \leqslant k \leqslant n \text{ et } 1 \leqslant i_1 < \dots < i_k \leqslant n)$$

Propriété 16.45 Soient A_1, \dots, A_n , des événements mutuellement indépendants. Alors, posant $\overline{B_i = A_i}$ ou $B_i = \overline{A_i}$ pour $1 \le i \le k \le n$, les événements B_1, \dots, B_k sont mutuellement indépendants.

17 Variables aléatoires réelles

Séquence 14

17.1 Généralités

Dans cette section, (Ω, \mathcal{T}) désigne un espace probabilisable (la tribu \mathcal{T} des événements est $\mathcal{P}(\Omega)$ au

premier semestre et \mathcal{T} tribu quelconque au second semestre). Pour $x \in \mathbb{R}$ et $A \subset \mathbb{R}$, nous adoptons les notations habituelles

<u>Définition</u> 17.1 (variable aléatoire réelle) Une V.A.R. sur un espace probabilisable (Ω, \mathcal{T}) est une application $X : \Omega \to \mathbb{R}$ vérifiant

$$\underbrace{\{\omega \in \Omega : X(\omega) \leqslant x\} \in \mathcal{T}}_{[X \leqslant x] \text{ \'ev\'enement}} \qquad (x \in \mathbb{R})$$

<u>Définition</u> 17.2 X est une V.A.R. certaine ssi il existe $c \in \mathbb{R}$ tel que $X(\omega) = c$ $(\omega \in \Omega)$

Définition 17.3 X est une V.A.R. quasi-certaine ssi il existe $c \in \mathbb{R}$ tel que P(X = c) = 1

<u>Définition</u> 17.4 (univers image) L'univers image d'une V.A.R. X sur un espace probabilisable (Ω, \mathcal{T}) est l'ensemble image $X(\Omega) = \{X(\omega) : \omega \in \Omega\}$

<u>Définition</u> 17.5 (système complet) Le système complet associé à une V.A.R. X sur un espace probabilisable (Ω, \mathcal{T}) , avec $X(\Omega)$ dénombrable, est la famille d'événements $\{[X=x]\}_{x\in X(\Omega)}$

Pour la suite de cette section, X désique une V.A.R. sur un espace probabilisé (Ω, \mathcal{T}, P) .

Définition 17.6 (loi d'une V.A.R.) La loi de X est la probabilité P_X définie sur $X(\Omega)$ par

$$P_{\mathbf{Y}}(A) = P(X \in A)$$
 (A événement de $X(\Omega)$)

Définition 17.7 La fonction de répartition de X est F_X l'application $F_X: \mathbb{R} \to [0,1]$ définie par

$$F_X(x) = P(X \leqslant x) \qquad (x \in \mathbb{R})$$

Propriété 17.8 (fonction de répartition) La fonction de répartition F_X d'une var X est croissante, continue à droite, sur $\mathbb R$ et vérifie $F_X \to 0$ et $F_X \to 1 \to 0$

Remarque : Si $X(\Omega)$ est dénombrable, elle est aussi constante par morceaux (en escalier)

Propriété 17.9 La fonction de répartition caractérise la loi d'une variable aléatoire

17.2 Espérance et variables aléatoires discretes Séquence 14 et 25 Dans cette section, (Ω, \mathcal{T}, P) désigne un espace probabilisé et X une V.A.R. dont l'univers image $X(\Omega)$ est fini ou dénombrable

Définition 17.10 (variable aléatoire finie) X V.A.R. finie $\iff X(\Omega)$ fini

Définition 17.11 (variable aléatoire discrète) X V.A.R. discrète $\iff X(\Omega)$ dénombrable

Définition 17.12 (fonction de masse) La fonction de masse d'une V.A.R discrète X est

$$\begin{array}{ccc} p_X : X(\Omega) & \to & [0,1] \\ x & \mapsto & P(X=x) \end{array}$$

Propriété 17.13 Si X est finie $(resp.\ discrète)$, alors $F_X(x) = \sum_{\substack{y \in X(\Omega) \\ y \le x}} \underbrace{P(X = y)}_{P_X(y)}$ $(x \in \mathbb{R})$

Propriété 17.14 Si X est finie (resp. discrète), $p_X(x) = P(X = x) = F_X(x) - F_X(x^-)$ $(x \in \mathbb{R})$

Définition 17.15 (espérance) Une V.A.R. discrète X admet une espérance

$$E(X) = \sum_{x \in X(\Omega)} x \underbrace{P(X = x)}_{p_X(x)}$$

si, et seulement si, cette somme est absolument convergente

Corollaire 17.16 Soit X une V.A.R finie, d'univers image $X(\Omega) = \{x_1, \dots, x_n\}$. Alors

$$E(X) = \sum_{k=1}^{n} x_k P(X = x_k)$$

<u>Théorème</u> 17.17 (théorème de transfert) Soit X une V.A.R. finie (resp. discrète) et f une fonction définie sur $X(\Omega)$. Alors,

$$E\big(f(X)\big) = \sum_{x \in X(\Omega)} f(x) P(X = x)$$

si, et seulement si, cette somme est absolument convergente

17.3 Espérance et variables aléatoires à densité

Séquence 30

<u>Définition</u> 17.18 (V.A.R. à densité) Une V.A.R. X est à densité ssi sa fonction de répartition F_X est continue sur \mathbb{R} , de classe \mathcal{C}^1 sur \mathbb{R} éventuellement privé d'un ensemble fini de points

Pour la suite de cette section, X désigne une V.A.R. à densité

<u>Définition</u> 17.19 (densité) $f: \mathbb{R} \to \mathbb{R}$ est une densité de X ssi f ne différe de F_X' qu'en un nombre fini de points

Propriété 17.20
$$f$$
 densité de $X \Longleftrightarrow F_X(x) = \int_{-\infty}^x f$ $(x \in \mathbb{R})$

Théorème 17.21 $f: \mathbb{R} \to \mathbb{R}$ est la densité d'une V.A.R. X ssi f est positive, continue sur \mathbb{R} privé d'un nombre fini de points et vérifie $\int_{-\infty}^{+\infty} f = 1$

Propriété 17.22 X est une V.A.R. à densité ssi aX + b est une V.A.R. à densité $(a \neq 0, b \in \mathbb{R})$

Méthode 17.23 (Pour obtenir fonction de répartition et densité de Y = aX + b)

1. Calculer $F_Y(y)$ pour $y \in \mathbb{R}$

$$F_Y(y) = P(Y \leqslant y) = P(aX + b \leqslant y) = P(aX \leqslant y - b) = P\left(X \leqslant \frac{y - b}{a}\right) = F_X\left(\frac{y - b}{a}\right) \qquad a > 0$$
$$= P\left(X > \frac{y - b}{a}\right) = 1 - F_X\left(\frac{y - b}{a}\right) \qquad a < 0$$

2. Dériver (la composée obtenue) pour en déduire la densité f_{Y}

$$f_Y(y) = F_Y'(y) = \frac{1}{a} f_X\left(\frac{y-b}{a}\right) \qquad \text{si } a > 0$$
$$= -\frac{1}{a} f_X\left(\frac{y-b}{a}\right) \qquad \text{si } a < 0$$

Définition 17.24 Une V.A.R. X de densité f admet une esperance

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

si, et seulement si, cette intégrale converge absolument

17.4 Espérance

Dans cette section, X est une V.A.R. finie, discrète ou à densité sur un espace probabilisé (Ω, \mathcal{T}, P) .

Propriété 17.25 Soit $c \in \mathbb{R}$ et X = c presque sûrement. Alors, E(X) = c

Définition 17.26 Le moment d'ordre $k \in \mathbb{N}^*$ de X est le nombre $m_k(X) = E(X^k)$, s'il existe.

Définition 17.27 X est une V.A.R. centrée ssi X admet une espérance et E(X) = 0

Propriété 17.28 X est une V.A.R. positive et centrée ssi X=0 presque sûrement

Propriété 17.29 (linéarité) Soient $(\lambda,\mu) \in \mathbb{R}^2$ et des V.A.R. X et Y admettant une esperance. Alors, $la\ \overline{V}.A.R.\ \lambda X + \mu Y$ admet une espérance et $E(\lambda X + \mu Y) = \lambda E(X) + \mu E(Y)$

Corollaire 17.30 Soit X une V.A.R. admettant une esperance. Alors,

$$E(aX + b) = aE(X) + b$$
 $(a \in \mathbb{R}, b \in \mathbb{R})$

<u>Méthode</u> 17.31 (Pour centrer une V.A.R X, qui admet une espérance) Lui soustraire son espérance pour obtenir la V.A.R. centrée Y = X - E(X)

Dans la suite de cette section, X admet une espérance

Propriété 17.32 $X \geqslant 0$ p.s. $\Longrightarrow E(X) \geqslant 0$

Propriété 17.33 $a \leqslant X \leqslant b$ p.s. $\Longrightarrow a \leqslant E(X) \leqslant b$

Propriété 17.34 $X \leqslant Y$ p.s. $\Longrightarrow E(X) \leqslant E(Y)$

Propriété 17.35 (tribu image) La tribu image de X est la tribu

$$\mathcal{T}_X := \{ A \subset X(\Omega) : (X \in A) \in \mathcal{T} \}$$

Propriété 17.36 (probabilité image) L'application $P_X: \mathcal{T}_X \to [0,1]$ est une probabilité $A \mapsto P(X \in A)$

17.5 Variance

Dans cette section, X désigne une V.A.R. sur un espace probabilisé (Ω, \mathcal{T}, P) , qui admet une espérance.

Définition 17.37 Lorsqu'elle existe, la variance d'une V.A.R. X est le nombre

$$V(X) = E\left((X - E(X))^2\right)$$

Propriété 17.38 V(X)=0 ssi il existe $c\in\mathbb{R}$ tel que X=c presque sûrement

Propriété 17.39 (CNS d'existence) X admet une variance (et une espérance) ssi X admet un moment d'ordre 2

Propriété 17.40 (formule de Kœnig-Huygens) Lorsque la variance de X existe,

$$V(X) = E(X^2) - E(X)^2$$

Propriété 17.41 (variance et transformée affine) Si X admet une variance, alors $\lambda X + \mu$ admet une variance pour $\lambda \in \mathbb{R}$ et $\mu \in \mathbb{R}$

Propriété 17.42 (transformation affine) $V(\lambda X + \mu) = \lambda^2 V(X)$ $(\lambda \in \mathbb{R}, \mu \in \mathbb{R})$

Propriété 17.43 $V(X) \ge 0$ lorsque X admet une variance

17.6 Ecart type

Dans cette section, X désigne une V.A.R. sur un espace probabilisé (Ω, \mathcal{T}, P) , qui admet une variance.

<u>Définition</u> 17.44 (écart type) $\sigma(X) = \sqrt{V(X)}$

Propriété 17.45 (transformation affine) $\sigma(\lambda X + \mu) = |\lambda|\sigma(X)$ $(\lambda \in \mathbb{R}, \mu \in \mathbb{R})$

Propriété 17.46 (positivité) $\sigma(X) \geqslant 0$

<u>Définition</u> 17.47 (V.A.R. réduite) X est réduite \iff V(X) = 1 $\sigma(X) = 1$

<u>Méthode</u> 17.48 (Pour réduire une V.A.R. X d'écart type $\sigma \neq 0$) Diviser par σ pour obtenir une V.A.R réduite $Y = \frac{X}{\sigma}$

Propriété 17.49 (V.A.R centrée réduite) Soit X une V.A.R. admettant une espérance μ et un écrat type $\sigma > 0$. Alors, on définit une V.A.R centrée et réduite X^* en posant

$$X^* = \frac{X - \mu}{\sigma} \Longleftrightarrow X = \mu + \sigma X^*$$

17.7 Approximations

Séquence 34, 35 et 36 ?

17.7.1 Théorèmes fondamentaux

Théorème 17.50 (Inégalité de Markov) Soit X une V.A.R. positive presque sûrement admettant une espérance. Alors,

$$P(X \geqslant \varepsilon) \leqslant \frac{E(X)}{\varepsilon} \qquad (\varepsilon > 0)$$

Théorème 17.51 (Inégalité de Bienaymé-Tchebychev) Soit X une V.A.R. admettant une variance. Alors,

$$P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}$$
 $(\varepsilon > 0)$

17.7.2 Convergence en probabilité

Dans cette section, $(X_n)_{n\in\mathbb{N}}$ et X sont des variables aléatoires définies sur (Ω, \mathcal{T}, P)

Définition 17.52 (convergence en probabilité)

$$X_n \stackrel{P}{\to} X \iff \lim_{n \to +\infty} (|X_n - X| > \varepsilon) = 0 \quad (\varepsilon > 0)$$

Théorème 17.53 (loi faible des grands nombres (loi binomiale))

$$X_n \hookrightarrow \mathcal{B}(n,p) \quad (n \in \mathbb{N}) \implies \frac{X_n}{n} \stackrel{P}{\to} p$$

17.7.3 Convergence en loi

Dans cette section, $p \in [0,1]$, $\lambda > 0$ et $(X_n)_{n \in \mathbb{N}}$, X et Y sont des variables aléatoires définies sur (Ω, \mathcal{T}, P)

<u>Définition</u> 17.54 (convergence en loi) $X_n \stackrel{\mathcal{L}}{\to} X \iff \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$ (*F* continue en *x*)

Théorème 17.55 (Théorème limite central) $X_n \hookrightarrow \mathcal{B}(n,p) \quad (n \in \mathbb{N}) \mid \implies X_n^* \stackrel{\mathcal{L}}{\to} Y \text{ avec } Y$ de loi normale centrée, réduite

18 Lois usuelles

Séquence 14

18.1 Lois discrètes finies

Dans cette section, X désigne une variable aléatoire réelle finie

18.1.1 Loi certaine

Définition 18.1 (loi certaine) X suit une loi certaine, égale à $m \iff P(X = m) = 1$

Pour la suite de cette section, X désigne une variable aléatoire réelle certaine égale à $m \in \mathbb{R}$

Propriété 18.2 (univers image) $X(\Omega) = \{m\}$

Propriété 18.4 (espérance) E(X) = m

Propriété 18.5 (variance) V(X) = 0

18.1.2 Loi uniforme

Définition 18.6
$$X \hookrightarrow \mathcal{U}(\{x_1, \dots, x_n\}) \iff P(X = x_i) = \frac{1}{n} \quad (1 \le i \le n)$$

Propriété 18.7 (univers image) $X(\Omega) = \{x_1, \dots, x_n\}$

Pour la suite de cette section, X désigne une variable aléatoire réelle de loi uniforme sur [1,n].

Propriété 18.8 (fonction de répartition)
$$F_X(x) = \begin{cases} 0 & \text{si } x < 1 \\ \frac{k}{n} & \text{si } k \leq x < k+1 \\ 1 & \text{si } n \leq x \end{cases}$$
 $(1 \leq k < n)$

Propriété 18.9 (espérance)
$$E(X) = \frac{n+1}{2}$$

Propriété 18.10 (variance)
$$V(X) = \frac{n^2 - 1}{12}$$

18.1.3 Loi de Bernoulli

Dans cette section, $p \in [0,1]$ et q = 1 - p

Pour la suite de cette section, X désigne une V.A.R. de loi de Bernoulli de paramètre p.

Propriété 18.12 (univers image) $X(\Omega) = \{0,1\}$

Propriété 18.14 (espérance)
$$E(X) = p$$

Propriété 18.15 (variance)
$$V(X) = pq$$

18.1.4 Loi binomiale

Dans cette section, $n \in \mathbb{N}^*$, $p \in [0,1]$ et q = 1 - p

Définition 18.16 (loi binomiale)
$$X \hookrightarrow \mathcal{B}(n,p) \Longleftrightarrow P(X=k) = \binom{n}{k} p^k q^{n-k} \qquad (k \in \llbracket 0,n \rrbracket)$$

Pour la suite de cette section, X désigne une V.A.R. de loi binomiale de paramètres n et p.

Propriété 18.17 (univers image)
$$X(\Omega) = [0,n]$$

Propriété 18.18 (espérance)
$$E(X) = np$$

Propriété 18.19 (variance)
$$V(X) = npq$$

18.2 Lois discrètes infinies

Séquence 25

Dans cette section, $p \in]0,1], q = 1 - p, \lambda > 0$ et X désigne une V.A.R.

18.2.1 Loi géométrique

Pour la suite de cette section, X désigne une V.A.R. de loi géométrique de paramètre p.

Propriété 18.21 (univers image)
$$X(\Omega) = \mathbb{N}^*$$

Propriété 18.22 (espérance)
$$E(X) = \frac{1}{p}$$

Propriété 18.23 (variance)
$$V(X) = \frac{q}{n^2}$$

18.2.2 Loi de Poisson

$$\underline{ \textbf{D\'efinition}} \ \ \textbf{18.24 (loi de Poisson)} \quad X \hookrightarrow \mathcal{P}(\lambda) \Longleftrightarrow P(X=k) = \tfrac{\lambda^k}{k!} \mathrm{e}^{-\lambda} \qquad (k \in \mathbb{N})$$

Pour la suite de cette section, X désigne une V.A.R. de loi de Poisson de paramètre λ .

Propriété 18.25 (univers image)
$$X(\Omega) = \mathbb{N}$$

Propriété 18.26 (espérance)
$$E(X) = \lambda$$

Propriété 18.27 (variance)
$$V(X) = \lambda$$

18.3 Lois à densité

Séquence 30

18.3.1 Loi uniforme (continue)

Dans cette section, les nombres réels a et b vérifient a < b et X désigne une V.A.R. à densité.

Propriété 18.29 (fonction de répartition)
$$X \hookrightarrow \mathcal{U}[a,b] \iff F_X(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } a \leqslant x < b \\ 1 & \text{si } b \leqslant x \end{cases}$$

Propriété 18.30 (transformation)
$$X \hookrightarrow \mathcal{U}[0,1] \Longleftrightarrow a + (b-a)X \hookrightarrow \mathcal{U}[a,b]$$
 $(a < b, b)$

Pour la suite de cette section, X désigne une variable aléatoire réelle de loi uniforme sur [a,b].

Propriété 18.31 (univers image)
$$X(\Omega) = [a,b]$$

Propriété 18.32 (espérance)
$$E(X) = \frac{b+a}{2}$$

Propriété 18.33 (variance)
$$V(X) = \frac{(b-a)^2}{12}$$

18.3.2 Loi exponentielle

Dans cette section, $\lambda > 0$ et X désigne une V.A.R. à densité.

Pour la suite de cette section, X désigne une V.A.R. de loi exponentielle de paramètres λ

Propriété 18.37 (univers image)
$$X(\Omega) = [0, +\infty[$$

Propriété 18.38 (espérance)
$$E(X) = \frac{1}{\lambda}$$

Propriété 18.39 (variance)
$$V(X) = \frac{1}{\sqrt{2}}$$

Propriété 18.40 (absence de mémoire)
$$P_{X>T}(X>T+t)=P(X>t)$$
 $(T\geqslant 0,t\geqslant 0)$

Définition 18.41 (loi sans mémoire) Une V.A.R. suit une loi sans mémoiressi
$$X \ge 0$$
 et $P(X > x + y) = P(X > x)P(X > y)$ $(x \ge 0, y \ge 0)$

Théorème 18.42 Une V.A.R. X suit une loi sans mémoire ssi X=0 p.s. ou X suit une loi exponentielle

18.3.3 Loi normale

Dans cette section, μ et σ désignent des nombres réels et X désigne une V.A.R. à densité.

Définition 18.43 (densité)
$$X \hookrightarrow \mathcal{N}(\mu, \sigma^2) \Longleftrightarrow f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$$
 $(x \in \mathbb{R})$

Définition 18.44
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

Propriété 18.45 (fonction de répartition)
$$X \hookrightarrow \mathcal{N}(\mu, \sigma^2) \iff F_X(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^2} dt$$

Pour la suite de cette section, X désigne une V.A.R. de loi normale de paramètres μ et σ^2

Propriété 18.47 (univers image) $X(\Omega) = \mathbb{R}$

Propriété 18.48 (espérance) $E(X) = \mu$

Propriété 18.49 (variance) $V(X) = \sigma^2$

Table des matières

1 Avant propos Bases théoriques 2 Logique Séquence 2 2.1 Assertions et propositions logiques 2.2 Opérateurs 2.2.1Affirmation 2.2.2Négation conjonction Disjonction inclusive Disjonction exclusive 2.2.6 Equivalence 2.2.7 Implication 2.3 Raisonnements classiques Raisonnement par double implication 2 Raisonnement par contraposition

43

	2.3.4	Raisonnement par équivalences
	2.3.5	Raisonnement par l'absurde
	2.3.6	Raisonnement par récurence
		produits, récurrences Séquence 3
3.1	Somme	
	3.1.1	Généralités
	3.1.2	Identité fondamentale Sommes de Bernouilli
		Sommes multiples
3.2		ts et factorielles
	3.2.1	Généralités
4 E	nsemble	es et applications Séquence 5
4.1	Ensem	
4.2		ons et applications
	4.2.1	Fonctions
	122	Applications
	4.2.3	Injections, surjections et bijections
4.3	Combi	natoire Séquence 7
		Cardinal
	4.3.2	Opérations
		•
Ense	embles	fondamentaux
5 G	naambl	e $\mathbb R$ des nombres réels Séquence 4
	Ordre	
0.1	Ordre	reer
6 E	nsemble	e $\mathbb C$ des nombres complexes Séquence 19
6.1	Forme	algébrique
		Généralités
	6.1.2	Parties réelles et imaginaires
		Conjuguaison
6.2	Forme	trigonométrique
	6.2.1	Module
	6.2.2	Argument
	6.2.3	Exponentielle complexe
		Forme trigonométrique
6.3	Trigon	ométrie
	_	cosinus et sinus
		tangente
	6.3.3	arctangente
	_	
Ana	lvse	

2.3.3 Raisonnement direct

7	Suites Séq	uence 4
7.1	Général	ités

7.2 Suites fondamentales Séquence 1

2		7.2.1	Suites arithmétiques	9
2		7.2.2	Suites géométriques	10
2		7.2.3	Suites arithmético-géométriques	10
2		7.2.4	Suites vérifiant une récurrence linéaire du second ordre	10
	7.3		bornées, minorées, majorées	10
)	7.4		convergentes	10
2	7.5		divergeant vers l'infini	11
2	7.6		monotones	11
3	7.7		négligeables Séquence 23	12
3	7.8		équivalentes Séquence 23	12
3		Sarves	5441.41611665 56446166 20	
3	8 8	Séries Sa	équence 23 et 24	12
3	8.1	Génér		12
,	8.2		à termes positifs	13
	8.3		de référence	13
1	0.0	Derres	de l'élélèlee	10
1 1	9 F	Conction	as réelles (comportement local)	13
1	9.1		es Séquence 6	13
1	0.1	9.1.1	Limites finies	13
± 5		9.1.2	Généralisation du concept de limite	13
, 5		9.1.3	Opérations	14
		9.1.4	Généralisations et opérations	14
5	9.2		nuité en un point Séquence 6	15
,	0.2	9.2.1	Généralités	15
		9.2.2	Opérations	15
3	9.3		ée en un point Séquence 12	15
	0.0	9.3.1	Généralitées	15
3		9.3.2	Opérations	16
3	9.4		araison des fonctions Séquence 27	16
	0.4	9.4.1	Fonctions négligeables	16
3		9.4.2	Fonctions équivalentes	16
3	9.5		oppements limités Séquence 23 et 33	17
3	0.0	9.5.1	Généralités	17
3		9.5.2	Opérations	17
5 7		9.5.3	Développements limités de référence	17
7 7		9.5.4	Formule de Taylor-Young	17
7		J.O.4	Tornitie de Taylor-Toding	11
7	10 F	Conction	ns réelles (comportement global) Séquence 11	18
3			ions réciproques	18
3			ions minorées, majorées et bornées	18
3			ions monotones	18
3			ions paires et impaires	18
)	10.4		Généralités	18
)			Opérations	19
	10 5		ions périodiques	19
)	10.5		Généralités	19
			Opérations	19
)	10.6		ions continues	19
))	10.0		Généralités	19
?)			Théorèmes fondamentaux	19 20

10.8 10.9	10.6.3 Continuité par morceaux Séquence 17 Fonctions dérivées Séquence 12 10.7.1 Généralités 10.7.2 Opérations 10.7.3 Monotonie 10.7.4 Théorèmes fondamentaux 10.7.5 Fonctions de classe \mathcal{C}^n Séquence 27 10.7.6 Opérations sur les fonctions de classe \mathcal{C}^n Séquence 27 Étude globale des fonctions d'une variable Recherche d'extrema Séquence 34, 35, et 36 D'Fonctions convexes Séquence 34, 35, et 36
11 T	
	ntégration
	Primitives Séquence 17
11.2	Intégrales sur un segment Séquence 17 et 18 11.2.1 Intégrale des fonctions continues
	11.2.2 Intégrale des fonctions continues par morceaux
	11.2.3 Propriétés
	11.2.4 Sommes de Riemann
	11.2.5 Formules de Taylor Séquence 32
11.3	Intégrales sur un intervalle quelconque Séquence 28
	11.3.1 Intégrale généralisée simple
	11.3.2 Intégrales des fonctions positives
	11.3.3 Intégrales généralisées réelles
	11.3.4 théorème fondamentaux
	11.3.5 Intégrales de référence
Alge	èbre
10 D	1.1
	olynômes <mark>Séquence 20</mark> Forme additive
12.1	12.1.1 Généralités
	12.1.2 Opérations algébriques
	12.1.3 Dérivation
	12.1.4 Substitution
	12.1.5 Degré
12.2	Forme multiplicative
	12.2.1 Diviseurs
	12.2.2 Racines et multiplicités
	12.2.3 Décomposition en produit
10.0	0. 10.71
	ystèmes linéaires Séquence 9
	Systèmes linéaires Opérations élémentaires
	Opérations élémentaires Résolution
10.0	1000fd0f0ff
14 N	latrices Séquence 13
	Matrices
14.2	Opérations

20	14.2.2 Multiples	29
20	14.2.3 Produits	29
20	14.2.4 Transposition	29
21	14.2.5 Inverse	29
21	14.2.6 Rang	29
21	14.3 Matrices carrées	30
21	14.3.1 † Trace	30
22	14.3.2 Matrices diagonales	30
22	14.3.3 Matrices triangulaires supérieures	30
22	14.3.4 Matrices symétriques	30
22	14.3.5 Matrices anti-symétriques	30
	14.3.6 Matrices qui commuttent	30
22	14.4 Matrices et systèmes linéaires	31
22	14.5 Rang d'une matrice	31
23	14.5.1 Généralités	31
23		
23	15 Espaces vectoriels Séquence 10	31
23	15.1 Espaces vectoriels	31
24	15.1.1 Loi interne	31
24	15.1.2 Loi externe	31
24	15.1.2 Eol externe 15.1.3 Espace vectoriel	31
24	15.1.5 Espace vectories 15.2 Sous-espaces vectoriels	32
24	15.2.1 Généralités	32
24	15.2.2 Espaces vectoriels engendrés	32
25	15.2.3 Familles de vecteurs	32
25	15.3 Espaces vectoriels de dimension finie Séquence 21 et 22	32
20	15.3.1 Dimension	32
0.5	15.3.2 Bases canoniques et dimensions de référence	33
25	15.3.3 Rang d'une famille de vecteurs	33
	15.3.5 Rang d'une famme de vecteurs 15.4 Produits cartésiens, sommes et supplémentaires Séquence 20 et 21	33
25	15.4.1 Produit cartésien	33
25	15.4.2 Sommes et supplémentaires	33
25	15.5 Applications linéaires Séquence 16 et 26	34
26	15.5.1 Applications linéaires	34
26	15.5.2 Noyau et image	35
26	15.5.3 Homothétie, projections, symétries.	35
26	15.5.1 Rang	35
27	15.5.2 Matrices	35
27	10.5.2 Watrices	55
27	D. 1.100.4	
27	Probabilités	36
28	16 Espaces probabilisés Séquence 7 et 8	36
28	16.1 Expériences aléatoires	36
28	16.2 Tribus Séquence 24	36
28	16.3 Espaces probabilisables	36
_~	16.4 Espaces probabilisés	37
28	16.5 Limite monotone Séquence 24	37
28	16.6 Probabilités conditionnelles	37
26 29	16.7 Indépendance	38
29 29	- · · · · · · · · · · · · · · · · · · ·	90
29		

17 V	ariables	aléatoires réelles Séquence 14
	Généra	*
17.2	Espéra	nce et variables aléatoires discretes Séquence 14 et 25
17.3	Espéra	nce et variables aléatoires à densité Séquence 30
17.4	Espéra	nce
17.5	Varian	ce
17.6	Ecart t	type
17.7	Approx	cimations Séquence 34, 35 et 36 ?
	17.7.1	Théorèmes fondamentaux
	17.7.2	Convergence en probabilité
	17.7.3	Convergence en loi

18 Lois usuelles Séquence 14

	I and the second	
38	18.1 Lois discrètes finies	40
38	18.1.1 Loi certaine	41
38	18.1.2 Loi uniforme	41
39	18.1.3 Loi de Bernoulli	41
39	18.1.4 Loi binomiale	41
40	18.2 Lois discrètes infinies Séquence 25	41
40	18.2.1 Loi géométrique	41
40	18.2.2 Loi de Poisson	41
40	18.3 Lois à densité Séquence 30	42
40	18.3.1 Loi uniforme (continue)	42
40	18.3.2 Loi exponentielle	42
	18.3.3 Loi normale	42
40		

45